On the spectral radius in
E. Porada (1971)
Colloquium Mathematicae
Similarity:
E. Porada (1971)
Colloquium Mathematicae
Similarity:
K. Parthasarathy, R. Prakash (2006)
Studia Mathematica
Similarity:
Relations between spectral synthesis in the Fourier algebra A(G) of a compact group G and the concept of operator synthesis due to Arveson have been studied in the literature. For an A(G)-submodule X of VN(G), X-synthesis in A(G) has been introduced by E. Kaniuth and A. Lau and studied recently by the present authors. To any such X we associate a -submodule X̂ of ℬ(L²(G)) (where is the weak-* Haagerup tensor product ), define the concept of X̂-operator synthesis and prove that a...
D. Müller, E. Prestini (2010)
Colloquium Mathematicae
Similarity:
We define partial spectral integrals on the Heisenberg group by means of localizations to isotropic or anisotropic dilates of suitable star-shaped subsets V containing the joint spectrum of the partial sub-Laplacians and the central derivative. Under the assumption that an L²-function f lies in the logarithmic Sobolev space given by , where is a suitable “generalized” sub-Laplacian associated to the dilation structure, we show that converges a.e. to f(x) as R → ∞.
Jean Bourgain, Alex Gamburd (2012)
Journal of the European Mathematical Society
Similarity:
We establish the spectral gap property for dense subgroups of SU , generated by finitely many elements with algebraic entries; this result was announced in [BG3]. The method of proof differs, in several crucial aspects, from that used in [BG] in the case of SU.
Huicai Jia, Jing Lou (2024)
Czechoslovak Mathematical Journal
Similarity:
For a set of graphs, an -factor of a graph is a spanning subgraph of , where each component of is contained in . It is very interesting to investigate the existence of factors in a graph with given minimum degree from the prospective of eigenvalues. We first propose a tight sufficient condition in terms of the -spectral radius for a graph involving minimum degree to contain a star factor. Moreover, we also present tight sufficient conditions based on the -spectral radius...
Ignat Domanov (2008)
Studia Mathematica
Similarity:
Let ϕ: [0,1] → [0,1] be a nondecreasing continuous function such that ϕ(x) > x for all x ∈ (0,1). Let the operator be defined on L₂[0,1]. We prove that has a finite number of nonzero eigenvalues if and only if ϕ(0) > 0 and ϕ(1-ε) = 1 for some 0 < ε < 1. Also, we show that the spectral trace of the operator always equals 1.
Valentina Casarino, Paolo Ciatti (2009)
Studia Mathematica
Similarity:
By using the notion of contraction of Lie groups, we transfer estimates for joint spectral projectors from the unit complex sphere in to the reduced Heisenberg group hⁿ. In particular, we deduce some estimates recently obtained by H. Koch and F. Ricci on hⁿ. As a consequence, we prove, in the spirit of Sogge’s work, a discrete restriction theorem for the sub-Laplacian L on hⁿ.
Felix Goldberg (2015)
Czechoslovak Mathematical Journal
Similarity:
The imbalance of an edge in a graph is defined as , where is the vertex degree. The irregularity of is then defined as the sum of imbalances over all edges of . This concept was introduced by Albertson who proved that (where ) and obtained stronger bounds for bipartite and triangle-free graphs. Since then a number of additional bounds were given by various authors. In this paper we prove a new upper bound, which improves a bound found by Zhou and Luo in 2008. Our bound involves...
Krzysztof Zajkowski (2005)
Banach Center Publications
Similarity:
We consider operators acting in the space C(X) (X is a compact topological space) of the form , u ∈ C(X), where and are given continuous mappings (1 ≤ k ≤ N). A new formula on the logarithm of the spectral radius r(A) is obtained. The logarithm of r(A) is defined as a nonlinear functional λ depending on the vector of functions . We prove that , where Mes is the set of all probability vectors of measures on X × 1,..., N and λ* is some convex lower-semicontinuous functional on...
Antoni Wawrzyńczyk (2007)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
Let B be a complex topological unital algebra. The left joint spectrum of a set S ⊂ B is defined by the formula = generates a proper left idealUsing the Schur lemma and the Gelfand-Mazur theorem we prove that has the spectral mapping property for sets S of pairwise commuting elements if (i) B is an m-convex algebra with all maximal left ideals closed, or (ii) B is a locally convex Waelbroeck algebra. The right ideal version of this result is also valid.
Haïkel Skhiri (2008)
Studia Mathematica
Similarity:
We show that the essential spectral radius of T ∈ B(H) can be calculated by the formula = inf: X an invertible operator, where is a Φ₁-perturbation function introduced by Mbekhta [J. Operator Theory 51 (2004)]. Also, we show that if is a Φ₂-perturbation function [loc. cit.] and if T is a Fredholm operator, then = sup: X an invertible operator.
Ajoy Jana, M. Thamban Nair (2019)
Czechoslovak Mathematical Journal
Similarity:
It is known that the nonlinear nonhomogeneous backward Cauchy problem , with , where is a densely defined positive self-adjoint unbounded operator on a Hilbert space, is ill-posed in the sense that small perturbations in the final value can lead to large deviations in the solution. We show, under suitable conditions on and , that a solution of the above problem satisfies an integral equation involving the spectral representation of , which is also ill-posed. Spectral truncation...
Benedetto Silvestri
Similarity:
The work is dedicated to investigating a limiting procedure for extending “local” integral operator equalities to “global” ones in the sense explained below, and to applying it to obtaining generalizations of the Newton-Leibniz formula for operator-valued functions for a wide class of unbounded operators. The integral equalities considered have the form . (1) They involve functions of the kind , where X is a general locally compact space, F runs over a suitable class of Banach subspaces...
Dai Tamaki (2012)
Journal of the European Mathematical Society
Similarity:
For a real central arrangement , Salvetti introduced a construction of a finite complex Sal which is homotopy equivalent to the complement of the complexified arrangement in [Sal87]. For the braid arrangement , the Salvetti complex Sal serves as a good combinatorial model for the homotopy type of the configuration space of points in , which is homotopy equivalent to the space of k little -cubes. Motivated by the importance of little cubes in homotopy theory, especially in...
Xiaodan Chen, Yaoping Hou (2015)
Czechoslovak Mathematical Journal
Similarity:
Let be the algebraic connectivity, and let be the Laplacian spectral radius of a -connected graph with vertices and edges. In this paper, we prove that with equality if and only if is the complete graph or . Moreover, if is non-regular, then where stands for the maximum degree of . Remark that in some cases, these two inequalities improve some previously known results.
Antoni Wawrzyńczyk (2018)
Mathematica Bohemica
Similarity:
We give a necessary and a sufficient condition for a subset of a locally convex Waelbroeck algebra to have a non-void left joint spectrum In particular, for a Lie subalgebra we have if and only if generates in a proper left ideal. We also obtain a version of the spectral mapping formula for a modified left joint spectrum. Analogous theorems for the right joint spectrum and the Harte spectrum are also valid.
Krzysztof Zajkowski (2010)
Studia Mathematica
Similarity:
We prove that for the spectral radius of a weighted composition operator , acting in the space , the following variational principle holds: , where X is a Hausdorff compact space, α: X → X is a continuous mapping preserving a Borel measure μ with suppμ = X, is the set of all α-invariant ergodic probability measures on X, and a: X → ℝ is a continuous and -measurable function, where . This considerably extends the range of validity of the above formula, which was previously known...
Alexandru Aleman, Anders Dahlner (2006)
Studia Mathematica
Similarity:
We consider the quantization of inversion in commutative p-normed quasi-Banach algebras with unit. The standard questions considered for such an algebra A with unit e and Gelfand transform x ↦ x̂ are: (i) Is bounded, where ν ∈ (0,1)? (ii) For which δ ∈ (0,1) is bounded? Both questions are related to a “uniform spectral radius” of the algebra, , introduced by Björk. Question (i) has an affirmative answer if and only if , and this result is extended to more general nonlinear extremal...