Coorbit space theory for quasi-Banach spaces
Studia Mathematica (2007)
- Volume: 180, Issue: 3, page 237-253
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topHolger Rauhut. "Coorbit space theory for quasi-Banach spaces." Studia Mathematica 180.3 (2007): 237-253. <http://eudml.org/doc/285191>.
@article{HolgerRauhut2007,
abstract = {We generalize the classical coorbit space theory developed by Feichtinger and Gröchenig to quasi-Banach spaces. As a main result we provide atomic decompositions for coorbit spaces defined with respect to quasi-Banach spaces. These atomic decompositions are used to prove fast convergence rates of best n-term approximation schemes. We apply the abstract theory to time-frequency analysis of modulation spaces $M^\{p,q\}_\{m\}$, 0 < p,q ≤ ∞.},
author = {Holger Rauhut},
journal = {Studia Mathematica},
keywords = {atomic decomposition; modulation space; quasi-Banach space; Lorentz space; nonlinear approximation},
language = {eng},
number = {3},
pages = {237-253},
title = {Coorbit space theory for quasi-Banach spaces},
url = {http://eudml.org/doc/285191},
volume = {180},
year = {2007},
}
TY - JOUR
AU - Holger Rauhut
TI - Coorbit space theory for quasi-Banach spaces
JO - Studia Mathematica
PY - 2007
VL - 180
IS - 3
SP - 237
EP - 253
AB - We generalize the classical coorbit space theory developed by Feichtinger and Gröchenig to quasi-Banach spaces. As a main result we provide atomic decompositions for coorbit spaces defined with respect to quasi-Banach spaces. These atomic decompositions are used to prove fast convergence rates of best n-term approximation schemes. We apply the abstract theory to time-frequency analysis of modulation spaces $M^{p,q}_{m}$, 0 < p,q ≤ ∞.
LA - eng
KW - atomic decomposition; modulation space; quasi-Banach space; Lorentz space; nonlinear approximation
UR - http://eudml.org/doc/285191
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.