Displaying similar documents to “Coorbit space theory for quasi-Banach spaces”

Inclusion Indices of Quasi-Banach Spaces

Fernando Cobos, Luz M. Fernández-Cabrera, Antonio Manzano, Antón Martínez (2007)

Bollettino dell'Unione Matematica Italiana

Similarity:

We investigate inclusion indices for quasi-Banach spaces. First we consider the case of function spaces on [ 0 , 1 ] , then the sequence case and finally we develop an abstract approach dealing with indices defined by the real interpolation scale gen- erated by a quasi-Banach couple.

Stability of the Cauchy functional equation in quasi-Banach spaces

Jacek Tabor (2004)

Annales Polonici Mathematici

Similarity:

Let X be a quasi-Banach space. We prove that there exists K > 0 such that for every function w:ℝ → X satisfying ||w(s+t)-w(s)-w(t)|| ≤ ε(|s|+|t|) for s,t ∈ ℝ, there exists a unique additive function a:ℝ → X such that a(1)=0 and ||w(s)-a(s)-sθ(log₂|s|)|| ≤ Kε|s| for s ∈ ℝ, where θ: ℝ → X is defined by θ ( k ) : = w ( 2 k ) / 2 k for k ∈ ℤ and extended in a piecewise linear way over the rest of ℝ.

Bounded elements and spectrum in Banach quasi *-algebras

Camillo Trapani (2006)

Studia Mathematica

Similarity:

A normal Banach quasi *-algebra (,) has a distinguished Banach *-algebra b consisting of bounded elements of . The latter *-algebra is shown to coincide with the set of elements of having finite spectral radius. If the family () of bounded invariant positive sesquilinear forms on contains sufficiently many elements then the Banach *-algebra of bounded elements can be characterized via a C*-seminorm defined by the elements of ().

On quasi-compactness of operator nets on Banach spaces

Eduard Yu. Emel'yanov (2011)

Studia Mathematica

Similarity:

The paper introduces a notion of quasi-compact operator net on a Banach space. It is proved that quasi-compactness of a uniform Lotz-Räbiger net ( T λ ) λ is equivalent to quasi-compactness of some operator T λ . We prove that strong convergence of a quasi-compact uniform Lotz-Räbiger net implies uniform convergence to a finite-rank projection. Precompactness of operator nets is also investigated.

Some remarks on quasi-Cohen sets

Pascal Lefèvre, Daniel Li (2001)

Colloquium Mathematicae

Similarity:

We are interested in Banach space geometry characterizations of quasi-Cohen sets. For example, it turns out that they are exactly the subsets E of the dual of an abelian compact group G such that the canonical injection C ( G ) / C E c ( G ) L ² E ( G ) is a 2-summing operator. This easily yields an extension of a result due to S. Kwapień and A. Pełczyński. We also investigate some properties of translation invariant quotients of L¹ which are isomorphic to subspaces of L¹.

Norm continuity of weakly quasi-continuous mappings

Alireza Kamel Mirmostafaee (2011)

Colloquium Mathematicae

Similarity:

Let be the class of Banach spaces X for which every weakly quasi-continuous mapping f: A → X defined on an α-favorable space A is norm continuous at the points of a dense G δ subset of A. We will show that this class is stable under c₀-sums and p -sums of Banach spaces for 1 ≤ p < ∞.

Quasi-constricted linear operators on Banach spaces

Eduard Yu. Emel&amp;#039;yanov, Manfred P. H. Wolff (2001)

Studia Mathematica

Similarity:

Let X be a Banach space over ℂ. The bounded linear operator T on X is called quasi-constricted if the subspace X : = x X : l i m n | | T x | | = 0 is closed and has finite codimension. We show that a power bounded linear operator T ∈ L(X) is quasi-constricted iff it has an attractor A with Hausdorff measure of noncompactness χ | | · | | ( A ) < 1 for some equivalent norm ||·||₁ on X. Moreover, we characterize the essential spectral radius of an arbitrary bounded operator T by quasi-constrictedness of scalar multiples of T. Finally, we prove...

Conditionality constants of quasi-greedy bases in super-reflexive Banach spaces

F. Albiac, J. L. Ansorena, G. Garrigós, E. Hernández, M. Raja (2015)

Studia Mathematica

Similarity:

We show that in a super-reflexive Banach space, the conditionality constants k N ( ) of a quasi-greedy basis ℬ grow at most like O ( ( l o g N ) 1 - ε ) for some 0 < ε < 1. This extends results by the third-named author and Wojtaszczyk (2014), where this property was shown for quasi-greedy bases in L p for 1 < p < ∞. We also give an example of a quasi-greedy basis ℬ in a reflexive Banach space with k N ( ) l o g N .

Fine and quasi connectedness in nonlinear potential theory

David R. Adams, John L. Lewis (1985)

Annales de l'institut Fourier

Similarity:

If B α , p denotes the Bessel capacity of subsets of Euclidean n -space, α &gt; 0 , 1 &lt; p &lt; , naturally associated with the space of Bessel potentials of L p -functions, then our principal result is the estimate: for 1 &lt; α p n , there is a constant C = C ( α , p , n ) such that for any set E min { B α , p ( E Q ) , B α , p ( E c Q ) } C · B α , p ( Q f E ) for all open cubes Q in n -space. Here f E is the boundary of the E in the ( α , p ) -fine topology i.e. the smallest topology on c -space that makes the associated ( α , p ) -linear potentials continuous there. As a consequence,...

Quasi-greedy bases and Lebesgue-type inequalities

S. J. Dilworth, M. Soto-Bajo, V. N. Temlyakov (2012)

Studia Mathematica

Similarity:

We study Lebesgue-type inequalities for greedy approximation with respect to quasi-greedy bases. We mostly concentrate on the L p spaces. The novelty of the paper is in obtaining better Lebesgue-type inequalities under extra assumptions on a quasi-greedy basis than known Lebesgue-type inequalities for quasi-greedy bases. We consider uniformly bounded quasi-greedy bases of L p , 1 < p < ∞, and prove that for such bases an extra multiplier in the Lebesgue-type inequality can be taken...

Isomorphisms of some reflexive algebras

Jiankui Li, Zhidong Pan (2008)

Studia Mathematica

Similarity:

Suppose ℒ₁ and ℒ₂ are subspace lattices on complex separable Banach spaces X and Y, respectively. We prove that under certain lattice-theoretic conditions every isomorphism from algℒ₁ to algℒ₂ is quasi-spatial; in particular, if a subspace lattice ℒ of a complex separable Banach space X contains a sequence E i such that ( E i ) X , E i E i + 1 , and i = 1 E i = X then every automorphism of algℒ is quasi-spatial.

Boundedness of sublinear operators in Triebel-Lizorkin spaces via atoms

Liguang Liu, Dachun Yang (2009)

Studia Mathematica

Similarity:

Let s ∈ ℝ, p ∈ (0,1] and q ∈ [p,∞). It is proved that a sublinear operator T uniquely extends to a bounded sublinear operator from the Triebel-Lizorkin space p , q s ( ) to a quasi-Banach space ℬ if and only if sup | | T ( a ) | | : a is an infinitely differentiable (p,q,s)-atom of p , q s ( ) < ∞, where the (p,q,s)-atom of p , q s ( ) is as defined by Han, Paluszyński and Weiss.

The Dual of a Non-reflexive L-embedded Banach Space Contains l Isometrically

Hermann Pfitzner (2010)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

A Banach space is said to be L-embedded if it is complemented in its bidual in such a way that the norm between the two complementary subspaces is additive. We prove that the dual of a non-reflexive L-embedded Banach space contains l isometrically.

Representation and construction of homogeneous and quasi-homogeneous n -ary aggregation functions

Yong Su, Radko Mesiar (2021)

Kybernetika

Similarity:

Homogeneity, as one type of invariantness, means that an aggregation function is invariant with respect to multiplication by a constant, and quasi-homogeneity, as a relaxed version, reflects the original output as well as the constant. In this paper, we characterize all homogeneous/quasi-homogeneous n -ary aggregation functions and present several methods to generate new homogeneous/quasi-homogeneous n -ary aggregation functions by aggregation of given ones.

Estimation of the Szlenk index of Banach spaces via Schreier spaces

Ryan Causey (2013)

Studia Mathematica

Similarity:

For each ordinal α < ω₁, we prove the existence of a Banach space with a basis and Szlenk index ω α + 1 which is universal for the class of separable Banach spaces with Szlenk index not exceeding ω α . Our proof involves developing a characterization of which Banach spaces embed into spaces with an FDD with upper Schreier space estimates.

An approximation property with respect to an operator ideal

Juan Manuel Delgado, Cándido Piñeiro (2013)

Studia Mathematica

Similarity:

Given an operator ideal , we say that a Banach space X has the approximation property with respect to if T belongs to S T : S ( X ) ¯ τ c for every Banach space Y and every T ∈ (Y,X), τ c being the topology of uniform convergence on compact sets. We present several characterizations of this type of approximation property. It is shown that some of the existing approximation properties in the literature may be included in this setting.

On the compact approximation property

Vegard Lima, Åsvald Lima, Olav Nygaard (2004)

Studia Mathematica

Similarity:

We show that a Banach space X has the compact approximation property if and only if for every Banach space Y and every weakly compact operator T: Y → X, the space = S ∘ T: S compact operator on X is an ideal in = span(,T) if and only if for every Banach space Y and every weakly compact operator T: Y → X, there is a net ( S γ ) of compact operators on X such that s u p γ | | S γ T | | | | T | | and S γ I X in the strong operator topology. Similar results for dual spaces are also proved.

Schauder bases and the bounded approximation property in separable Banach spaces

Jorge Mujica, Daniela M. Vieira (2010)

Studia Mathematica

Similarity:

Let E be a separable Banach space with the λ-bounded approximation property. We show that for each ϵ > 0 there is a Banach space F with a Schauder basis such that E is isometrically isomorphic to a 1-complemented subspace of F and, moreover, the sequence (Tₙ) of canonical projections in F has the properties s u p n | | T | | λ + ϵ and l i m s u p n | | T | | λ . This is a sharp quantitative version of a classical result obtained independently by Pełczyński and by Johnson, Rosenthal and Zippin.

A note on extensions of Pełczyński's decomposition method in Banach spaces

Elói Medina Galego (2007)

Studia Mathematica

Similarity:

Let X,Y,A and B be Banach spaces such that X is isomorphic to Y ⊕ A and Y is isomorphic to X ⊕ B. In 1996, W. T. Gowers solved the Schroeder-Bernstein problem for Banach spaces by showing that X is not necessarily isomorphic to Y. In the present paper, we give a necessary and sufficient condition on sextuples (p,q,r,s,u,v) in ℕ with p + q ≥ 2, r + s ≥ 1 and u, v ∈ ℕ* for X to be isomorphic to Y whenever these spaces satisfy the following decomposition scheme: ⎧ X u X p Y q , ⎨ ⎩ Y v A r B s . Namely, Ω =...

Projections from L ( X , Y ) onto K ( X , Y )

Kamil John (2000)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Generalization of certain results in [Sap] and simplification of the proofs are given. We observe e.g.: Let X and Y be Banach spaces such that X is weakly compactly generated Asplund space and X * has the approximation property (respectively Y is weakly compactly generated Asplund space and Y * has the approximation property). Suppose that L ( X , Y ) K ( X , Y ) and let 1 < λ < 2 . Then X (respectively Y ) can be equivalently renormed so that any projection P of L ( X , Y ) onto K ( X , Y ) has the sup-norm greater or equal to λ . ...