Pointwise multipliers on martingale Campanato spaces
Studia Mathematica (2014)
- Volume: 220, Issue: 1, page 87-100
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topEiichi Nakai, and Gaku Sadasue. "Pointwise multipliers on martingale Campanato spaces." Studia Mathematica 220.1 (2014): 87-100. <http://eudml.org/doc/285393>.
@article{EiichiNakai2014,
abstract = {We introduce generalized Campanato spaces $_\{p,ϕ\}$ on a probability space (Ω,ℱ,P), where p ∈ [1,∞) and ϕ: (0,1] → (0,∞). If p = 1 and ϕ ≡ 1, then $_\{p,ϕ\} = BMO$. We give a characterization of the set of all pointwise multipliers on $_\{p,ϕ\}$.},
author = {Eiichi Nakai, Gaku Sadasue},
journal = {Studia Mathematica},
keywords = {Campanato space; pointwise multiplier; martigale space; regular filtration},
language = {eng},
number = {1},
pages = {87-100},
title = {Pointwise multipliers on martingale Campanato spaces},
url = {http://eudml.org/doc/285393},
volume = {220},
year = {2014},
}
TY - JOUR
AU - Eiichi Nakai
AU - Gaku Sadasue
TI - Pointwise multipliers on martingale Campanato spaces
JO - Studia Mathematica
PY - 2014
VL - 220
IS - 1
SP - 87
EP - 100
AB - We introduce generalized Campanato spaces $_{p,ϕ}$ on a probability space (Ω,ℱ,P), where p ∈ [1,∞) and ϕ: (0,1] → (0,∞). If p = 1 and ϕ ≡ 1, then $_{p,ϕ} = BMO$. We give a characterization of the set of all pointwise multipliers on $_{p,ϕ}$.
LA - eng
KW - Campanato space; pointwise multiplier; martigale space; regular filtration
UR - http://eudml.org/doc/285393
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.