Ergodicity of ℤ² extensions of irrational rotations
Studia Mathematica (2011)
- Volume: 204, Issue: 3, page 235-246
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topYuqing Zhang. "Ergodicity of ℤ² extensions of irrational rotations." Studia Mathematica 204.3 (2011): 235-246. <http://eudml.org/doc/285504>.
@article{YuqingZhang2011,
abstract = {Let = [0,1) be the additive group of real numbers modulo 1, α ∈ be an irrational number and t ∈ . We study ergodicity of skew product extensions T : × ℤ² → × ℤ², $T(x,s₁,s₂) = (x + α, s₁ + 2χ_\{[0,1/2)\}(x) - 1, s₂ + 2χ_\{[0,1/2)\}(x+t) - 1)$.},
author = {Yuqing Zhang},
journal = {Studia Mathematica},
keywords = {cocycle; ergodicity; irrational rotations},
language = {eng},
number = {3},
pages = {235-246},
title = {Ergodicity of ℤ² extensions of irrational rotations},
url = {http://eudml.org/doc/285504},
volume = {204},
year = {2011},
}
TY - JOUR
AU - Yuqing Zhang
TI - Ergodicity of ℤ² extensions of irrational rotations
JO - Studia Mathematica
PY - 2011
VL - 204
IS - 3
SP - 235
EP - 246
AB - Let = [0,1) be the additive group of real numbers modulo 1, α ∈ be an irrational number and t ∈ . We study ergodicity of skew product extensions T : × ℤ² → × ℤ², $T(x,s₁,s₂) = (x + α, s₁ + 2χ_{[0,1/2)}(x) - 1, s₂ + 2χ_{[0,1/2)}(x+t) - 1)$.
LA - eng
KW - cocycle; ergodicity; irrational rotations
UR - http://eudml.org/doc/285504
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.