Displaying similar documents to “Ergodicity of ℤ² extensions of irrational rotations”

Normal integral bases and tameness conditions for Kummer extensions

Ilaria Del Corso, Lorenzo Paolo Rossi (2013)

Acta Arithmetica

Similarity:

We present a detailed analysis of some properties of a general tamely ramified Kummer extension of number fields L/K. Our main achievement is a criterion for the existence of a normal integral basis for a general Kummer extension, which generalizes the existing results. Our approach also allows us to explicitly describe the Steinitz class of L/K and we get an easy criterion for this class to be trivial. In the second part of the paper we restrict to the particular case of tame Kummer...

Relative Bogomolov extensions

Robert Grizzard (2015)

Acta Arithmetica

Similarity:

A subfield K ⊆ ℚ̅ has the Bogomolov property if there exists a positive ε such that no non-torsion point of K × has absolute logarithmic height below ε. We define a relative extension L/K to be Bogomolov if this holds for points of L × K × . We construct various examples of extensions which are and are not Bogomolov. We prove a ramification criterion for this property, and use it to show that such extensions can always be constructed if some rational prime has bounded ramification index in K. ...

Preservation of properties of a map by forcing

Akira Iwasa (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let f : X Y be a continuous map such as an open map, a closed map or a quotient map. We study under what circumstances f remains an open, closed or quotient map in forcing extensions.

The power set of ω Elementary submodels and weakenings of CH

István Juhász, Kenneth Kunen (2001)

Fundamenta Mathematicae

Similarity:

We define a new principle, SEP, which is true in all Cohen extensions of models of CH, and explore the relationship between SEP and other such principles. SEP is implied by each of CH*, the weak Freeze-Nation property of (ω), and the (ℵ₁,ℵ₀)-ideal property. SEP implies the principle C s ( ω ) , but does not follow from C s ( ω ) , or even C s ( ω ) .

Ultrafilter extensions of asymptotic density

Jan Grebík (2019)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We characterize for which ultrafilters on ω is the ultrafilter extension of the asymptotic density on natural numbers σ -additive on the quotient boolean algebra 𝒫 ( ω ) / d 𝒰 or satisfies similar additive condition on 𝒫 ( ω ) / fin . These notions were defined in [Blass A., Frankiewicz R., Plebanek G., Ryll-Nardzewski C., A Note on extensions of asymptotic density, Proc. Amer. Math. Soc. 129 (2001), no. 11, 3313–3320] under the name A P (null) and A P (*). We also present a characterization of a P - and semiselective...

A note on the super-additive and sub-additive transformations of aggregation functions: The multi-dimensional case

Fateme Kouchakinejad, Alexandra Šipošová (2017)

Kybernetika

Similarity:

For an aggregation function A we know that it is bounded by A * and A * which are its super-additive and sub-additive transformations, respectively. Also, it is known that if A * is directionally convex, then A = A * and A * is linear; similarly, if A * is directionally concave, then A = A * and A * is linear. We generalize these results replacing the directional convexity and concavity conditions by the weaker assumptions of overrunning a super-additive function and underrunning a sub-additive function, respectively. ...

On the compositum of all degree d extensions of a number field

Itamar Gal, Robert Grizzard (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

We study the compositum k [ d ] of all degree d extensions of a number field k in a fixed algebraic closure. We show k [ d ] contains all subextensions of degree less than d if and only if d 4 . We prove that for d > 2 there is no bound c = c ( d ) on the degree of elements required to generate finite subextensions of k [ d ] / k . Restricting to Galois subextensions, we prove such a bound does not exist under certain conditions on divisors of d , but that one can take c = d when d is prime. This question was inspired by work of...

Piecewise hereditary algebras under field extensions

Jie Li (2021)

Czechoslovak Mathematical Journal

Similarity:

Let A be a finite-dimensional k -algebra and K / k be a finite separable field extension. We prove that A is derived equivalent to a hereditary algebra if and only if so is A k K .

Generic extensions of models of ZFC

Lev Bukovský (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The paper contains a self-contained alternative proof of my Theorem in Characterization of generic extensions of models of set theory, Fund. Math. 83 (1973), 35–46, saying that for models M N of ZFC with same ordinals, the condition A p r M , N ( κ ) implies that N is a κ -C.C. generic extension of M .

A characterization of Eisenstein polynomials generating extensions of degree p 2 and cyclic of degree p 3 over an unramified 𝔭 -adic field

Maurizio Monge (2014)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let p 2 be a prime. We derive a technique based on local class field theory and on the expansions of certain resultants allowing to recover very easily Lbekkouri’s characterization of Eisenstein polynomials generating cyclic wild extensions of degree p 2 over p , and extend it to when the base fields K is an unramified extension of p . When a polynomial satisfies a subset of such conditions the first unsatisfied condition characterizes the Galois group of the normal closure. We...

Troesch complexes and extensions of strict polynomial functors

Antoine Touzé (2012)

Annales scientifiques de l'École Normale Supérieure

Similarity:

We develop a new approach of extension calculus in the category of strict polynomial functors, based on Troesch complexes. We obtain new short elementary proofs of numerous classical Ext -computations as well as new results. In particular, we get a cohomological version of the “fundamental theorems” from classical invariant theory for  G L n for  n big enough (and we give a conjecture for smaller values of  n ). We also study the “twisting spectral sequence” E s , t ( F , G , r ) converging to the extension groups...

On the ergodic decomposition for a cocycle

Jean-Pierre Conze, Albert Raugi (2009)

Colloquium Mathematicae

Similarity:

Let (X,,μ,τ) be an ergodic dynamical system and φ be a measurable map from X to a locally compact second countable group G with left Haar measure m G . We consider the map τ φ defined on X × G by τ φ : ( x , g ) ( τ x , φ ( x ) g ) and the cocycle ( φ ) n generated by φ. Using a characterization of the ergodic invariant measures for τ φ , we give the form of the ergodic decomposition of μ ( d x ) m G ( d g ) or more generally of the τ φ -invariant measures μ χ ( d x ) χ ( g ) m G ( d g ) , where μ χ ( d x ) is χ∘φ-conformal for an exponential χ on G.

On Meager Additive and Null Additive Sets in the Cantor Space 2 ω and in ℝ

Tomasz Weiss (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

Let T be the standard Cantor-Lebesgue function that maps the Cantor space 2 ω onto the unit interval ⟨0,1⟩. We prove within ZFC that for every X 2 ω , X is meager additive in 2 ω iff T(X) is meager additive in ⟨0,1⟩. As a consequence, we deduce that the cartesian product of meager additive sets in ℝ remains meager additive in ℝ × ℝ. In this note, we also study the relationship between null additive sets in 2 ω and ℝ.