Moore-Penrose inverses of Gram operators on Hilbert C*-modules
M. S. Moslehian; K. Sharif; M. Forough; M. Chakoshi
Studia Mathematica (2012)
- Volume: 210, Issue: 2, page 189-196
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topM. S. Moslehian, et al. "Moore-Penrose inverses of Gram operators on Hilbert C*-modules." Studia Mathematica 210.2 (2012): 189-196. <http://eudml.org/doc/285532>.
@article{M2012,
	abstract = {Let t be a regular operator between Hilbert C*-modules and $t^\{†\}$ be its Moore-Penrose inverse. We investigate the Moore-Penrose invertibility of the Gram operator t*t. More precisely, we study some conditions ensuring that $t^\{†\} = (t*t)^\{†\}t* = t*(tt*)^\{†\}$ and $(t*t)^\{†\} = t^\{†\}t*^\{†\}$. As an application, we get some results for densely defined closed operators on Hilbert C*-modules over C*-algebras of compact operators.},
	author = {M. S. Moslehian, K. Sharif, M. Forough, M. Chakoshi},
	journal = {Studia Mathematica},
	keywords = {unbounded operator; Moore-Penrose inverse; Hilbert -module; -algebra; -algebra of compact operators},
	language = {eng},
	number = {2},
	pages = {189-196},
	title = {Moore-Penrose inverses of Gram operators on Hilbert C*-modules},
	url = {http://eudml.org/doc/285532},
	volume = {210},
	year = {2012},
}
TY  - JOUR
AU  - M. S. Moslehian
AU  - K. Sharif
AU  - M. Forough
AU  - M. Chakoshi
TI  - Moore-Penrose inverses of Gram operators on Hilbert C*-modules
JO  - Studia Mathematica
PY  - 2012
VL  - 210
IS  - 2
SP  - 189
EP  - 196
AB  - Let t be a regular operator between Hilbert C*-modules and $t^{†}$ be its Moore-Penrose inverse. We investigate the Moore-Penrose invertibility of the Gram operator t*t. More precisely, we study some conditions ensuring that $t^{†} = (t*t)^{†}t* = t*(tt*)^{†}$ and $(t*t)^{†} = t^{†}t*^{†}$. As an application, we get some results for densely defined closed operators on Hilbert C*-modules over C*-algebras of compact operators.
LA  - eng
KW  - unbounded operator; Moore-Penrose inverse; Hilbert -module; -algebra; -algebra of compact operators
UR  - http://eudml.org/doc/285532
ER  - 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 