The Turán Number of the Graph 2P5

Halina Bielak; Sebastian Kieliszek

Discussiones Mathematicae Graph Theory (2016)

  • Volume: 36, Issue: 3, page 683-694
  • ISSN: 2083-5892

Abstract

top
We give the Turán number ex (n, 2P5) for all positive integers n, improving one of the results of Bushaw and Kettle [Turán numbers of multiple paths and equibipartite forests, Combininatorics, Probability and Computing, 20 (2011) 837-853]. In particular we prove that ex (n, 2P5) = 3n−5 for n ≥ 18.

How to cite

top

Halina Bielak, and Sebastian Kieliszek. "The Turán Number of the Graph 2P5." Discussiones Mathematicae Graph Theory 36.3 (2016): 683-694. <http://eudml.org/doc/285663>.

@article{HalinaBielak2016,
abstract = {We give the Turán number ex (n, 2P5) for all positive integers n, improving one of the results of Bushaw and Kettle [Turán numbers of multiple paths and equibipartite forests, Combininatorics, Probability and Computing, 20 (2011) 837-853]. In particular we prove that ex (n, 2P5) = 3n−5 for n ≥ 18.},
author = {Halina Bielak, Sebastian Kieliszek},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {forest; tree; Turán number},
language = {eng},
number = {3},
pages = {683-694},
title = {The Turán Number of the Graph 2P5},
url = {http://eudml.org/doc/285663},
volume = {36},
year = {2016},
}

TY - JOUR
AU - Halina Bielak
AU - Sebastian Kieliszek
TI - The Turán Number of the Graph 2P5
JO - Discussiones Mathematicae Graph Theory
PY - 2016
VL - 36
IS - 3
SP - 683
EP - 694
AB - We give the Turán number ex (n, 2P5) for all positive integers n, improving one of the results of Bushaw and Kettle [Turán numbers of multiple paths and equibipartite forests, Combininatorics, Probability and Computing, 20 (2011) 837-853]. In particular we prove that ex (n, 2P5) = 3n−5 for n ≥ 18.
LA - eng
KW - forest; tree; Turán number
UR - http://eudml.org/doc/285663
ER -

References

top
  1. [1] N. Bushaw and N. Kettle, Turán numbers of multiple paths and equibipartite forests, Combin. Probab. Comput. 20 (2011) 837-853. doi:10.1017/S0963548311000460[Crossref] Zbl1234.05128
  2. [2] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959) 337-356. doi:10.1007/BF02024498[Crossref] Zbl0090.39401
  3. [3] R.J. Faudree and R.H. Schelp, Path Ramsey numbers in multicolorings, J. Combin. Theory Ser. B 19 (1975) 150-160. doi:10.1016/0095-8956(75)90080-5[Crossref] Zbl0286.05111
  4. [4] I. Gorgol, Turán numbers for disjoint copies of graphs, Graphs Combin. 27 (2011) 661-667. doi:10.1007/s00373-010-0999-5[Crossref][WoS] Zbl1234.05129
  5. [5] F. Harary, Graph Theory (Addison-Wesley, 1969). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.