Turán number of two vertex-disjoint copies of cliques
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 3, page 759-769
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topHu, Caiyun. "Turán number of two vertex-disjoint copies of cliques." Czechoslovak Mathematical Journal 74.3 (2024): 759-769. <http://eudml.org/doc/299314>.
@article{Hu2024,
abstract = {The Turán number of a given graph $H$, denoted by $\{\rm ex\}(n,H)$, is the maximum number of edges in an $H$-free graph on $n$ vertices. Applying a well-known result of Hajnal and Szemerédi, we determine the Turán number $\text\{ex\}(n, K_p \cup K_q$) of a vertex-disjoint union of cliques $K_p$ and $K_q$ for all values of $n$.},
author = {Hu, Caiyun},
journal = {Czechoslovak Mathematical Journal},
keywords = {clique; Hajnal and Szemerédi theorem; Turán number; extremal graph},
language = {eng},
number = {3},
pages = {759-769},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Turán number of two vertex-disjoint copies of cliques},
url = {http://eudml.org/doc/299314},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Hu, Caiyun
TI - Turán number of two vertex-disjoint copies of cliques
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 3
SP - 759
EP - 769
AB - The Turán number of a given graph $H$, denoted by ${\rm ex}(n,H)$, is the maximum number of edges in an $H$-free graph on $n$ vertices. Applying a well-known result of Hajnal and Szemerédi, we determine the Turán number $\text{ex}(n, K_p \cup K_q$) of a vertex-disjoint union of cliques $K_p$ and $K_q$ for all values of $n$.
LA - eng
KW - clique; Hajnal and Szemerédi theorem; Turán number; extremal graph
UR - http://eudml.org/doc/299314
ER -
References
top- Bielak, H., Kieliszek, S., 10.2478/umcsmath-2014-0003, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 68 (2014), 21-29. (2014) Zbl1292.05143MR3252513DOI10.2478/umcsmath-2014-0003
- Bielak, H., Kieliszek, S., 10.7151/dmgt.1883, Discuss. Math., Graph Theory 36 (2016), 683-694. (2016) Zbl1339.05195MR3518133DOI10.7151/dmgt.1883
- Brown, W. G., Erdős, P., Simonovits, M., 10.1016/0095-8956(73)90034-8, J. Comb. Theory, Ser. B 15 (1973), 77-93. (1973) Zbl0253.05124MR0387106DOI10.1016/0095-8956(73)90034-8
- Chen, W., Lu, C., Yuan, L.-T., 10.1007/s00373-022-02467-1, Graphs Comb. 38 (2022), Article ID 67, 5 pages. (2022) Zbl1485.05082MR4393992DOI10.1007/s00373-022-02467-1
- Silva, J. De, Heysse, K., Kapilow, A., Schenfisch, A., Young, M., 10.1016/j.disc.2017.09.016, Discrete Math. 341 (2018), 492-496. (2018) Zbl1376.05072MR3724116DOI10.1016/j.disc.2017.09.016
- Erdős, P., 10.1007/BF01650069, Arch. Math. 13 (1962), 222-227 German. (1962) Zbl0105.17504MR139542DOI10.1007/BF01650069
- Erdős, P., Gallai, T., 10.1007/BF02024498, Acta Math. Acad. Sci. Hung. 10 (1959), 337-356. (1959) Zbl0090.39401MR114772DOI10.1007/BF02024498
- Erdős, P., Simonovits, M., A limit theorem in graph theory, Stud. Sci. Math. Hung. 1 (1966), 51-57. (1966) Zbl0178.27301MR205876
- Erdős, P., Stone, A. H., 10.1090/S0002-9904-1946-08715-7, Bull. Am. Math. Soc. 52 (1946), 1087-1091. (1946) Zbl0063.01277MR0018807DOI10.1090/S0002-9904-1946-08715-7
- Füredi, Z., Gunderson, D. S., 10.1017/S0963548314000601, Comb. Probab. Comput. 24 (2015), 641-645. (2015) Zbl1371.05142MR3350026DOI10.1017/S0963548314000601
- Gorgol, I., 10.1007/s00373-010-0999-5, Graphs Comb. 27 (2011), 661-667. (2011) Zbl1234.05129MR2824986DOI10.1007/s00373-010-0999-5
- Gu, R., Li, X.-L., Shi, Y.-T., 10.1007/s10255-022-1056-x, Acta Math. Appl. Sin., Engl. Ser. 38 (2022), 229-234. (2022) Zbl1484.05103MR4375786DOI10.1007/s10255-022-1056-x
- Hajnal, A., Szemerédi, E., Proof of a conjecture of P. Erdős, Combinatorial Theory and Its Applications, I-III Colloquia Mathematica Societatis János Bolyai 4. North-Holland, Amsterdam (1970), 601-623. (1970) Zbl0217.02601MR297607
- Hou, J., Hu, C., Li, H., Liu, X., Yang, C., Zhang, Y., 10.48550/arXiv.2311.16189, Available at https://arxiv.org/abs/2311.16189 (2023), 12 pages. (2023) DOI10.48550/arXiv.2311.16189
- Hou, J., Hu, C., Li, H., Liu, X., Yang, C., Zhang, Y., 10.48550/arXiv.2311.15172, Available at https://arxiv.org/abs/2311.15172 (2023), 37 pages. (2023) DOI10.48550/arXiv.2311.15172
- Hou, J., Li, H., Liu, X., Yuan, L.-T., Zhang, Y., 10.48550/arXiv.2302.09849, Available at https://arxiv.org/abs/2302.09849 (2023), 33 pages. (2023) DOI10.48550/arXiv.2302.09849
- Liu, H., 10.37236/2856, Electron. J. Comb. 20 (2013), Article ID P65, 16 pages. (2013) Zbl1266.05074MR3040627DOI10.37236/2856
- Moon, J. W., 10.4153/CJM-1968-012-x, Can. J. Math. 20 (1968), 95-102. (1968) Zbl0153.54201MR219447DOI10.4153/CJM-1968-012-x
- Simonovits, M., A method for solving extremal problems in graph theory, stability problems, Theory of Graphs Academic Press, New York (1968), 279-319. (1968) Zbl0164.24604MR0233735
- Turán, P., On an extremal problem in graph theory, Mat. Fiz. Lapok 48 (1941), 436-452 Hungarian. (1941) Zbl0026.26903MR0018405
- Xiao, C., Zamora, O., 10.1016/j.disc.2021.112570, Discrete Math. 344 (2021), Article ID 112570, 7 pages. (2021) Zbl1472.05077MR4302081DOI10.1016/j.disc.2021.112570
- Yuan, L.-T., 10.1002/jgt.22237, J. Graph Theory 89 (2018), 26-39. (2018) Zbl1432.05057MR3828126DOI10.1002/jgt.22237
- Yuan, L.-T., 10.1002/jgt.22727, J. Graph Theory 98 (2021), 691-707. (2021) Zbl1522.05233MR4371474DOI10.1002/jgt.22727
- Yuan, L.-T., 10.1016/j.jctb.2021.10.006, J. Comb. Theory, Ser. B 152 (2022), 379-398. (2022) Zbl1478.05083MR4332746DOI10.1016/j.jctb.2021.10.006
- Yuan, L.-T., 10.1016/j.ejc.2022.103548, Eur. J. Comb. 104 (2022), Article ID 103548, 12 pages. (2022) Zbl1526.05076MR4414807DOI10.1016/j.ejc.2022.103548
- Yuan, L.-T., Zhang, X.-D., 10.1016/j.disc.2016.08.004, Discrete Math. 340 (2017), 132-139. (2017) Zbl1351.05122MR3578809DOI10.1016/j.disc.2016.08.004
- Yuan, L.-T., Zhang, X.-D., 10.1002/jgt.22710, J. Graph Theory 98 (2021), 499-524. (2021) Zbl1522.05219MR4371462DOI10.1002/jgt.22710
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.