Remarks on the critical Besov space and its embedding into weighted Besov-Orlicz spaces

Hidemitsu Wadade

Studia Mathematica (2010)

  • Volume: 201, Issue: 3, page 227-251
  • ISSN: 0039-3223

Abstract

top
We present several continuous embeddings of the critical Besov space B p n / p , ρ ( ) . We first establish a Gagliardo-Nirenberg type estimate | | u | | q , w r 0 , ν C ( 1 / ( n - r ) ) 1 / q + 1 / ν - 1 / ρ ( q / r ) 1 / ν - 1 / ρ | | u | | p 0 , ρ ( n - r ) p / n q | | u | | p n / p , ρ 1 - ( n - r ) p / n q , for 1 < p ≤ q < ∞, 1 ≤ ν < ρ ≤ ∞ and the weight function w r ( x ) = 1 / ( | x | r ) with 0 < r < n. Next, we prove the corresponding Trudinger type estimate, and obtain it in terms of the embedding B p n / p , ρ ( ) B Φ , w r 0 , ν ( ) , where the function Φ₀ of the weighted Besov-Orlicz space B Φ , w r 0 , ν ( ) is a Young function of the exponential type. Another point of interest is to embed B p n / p , ρ ( ) into the weighted Besov space B p , w 0 , ρ ( ) with the critical weight wₙ(x) = 1/|x|ⁿ; more precisely, we prove B p n / p , ρ ( ) B p , W s 0 , ρ ( ) with the weight W s ( x ) = 1 / ( | x | [ l o g ( e + 1 / | x | ) ] s ) for any s > 1.

How to cite

top

Hidemitsu Wadade. "Remarks on the critical Besov space and its embedding into weighted Besov-Orlicz spaces." Studia Mathematica 201.3 (2010): 227-251. <http://eudml.org/doc/285857>.

@article{HidemitsuWadade2010,
abstract = {We present several continuous embeddings of the critical Besov space $B^\{n/p,ρ\}_\{p\}(ℝⁿ)$. We first establish a Gagliardo-Nirenberg type estimate $||u||_\{Ḃ^\{0,ν\}_\{q,w_r\}\} ≤ Cₙ(1/(n-r))^\{1/q + 1/ν - 1/ρ\} (q/r)^\{1/ν - 1/ρ\} ||u||_\{Ḃ^\{0,ρ\}_\{p\}\}^\{(n-r)p/nq\}| |u||_\{Ḃ^\{n/p,ρ\}_\{p\}\}^\{1-(n-r)p/nq\}$, for 1 < p ≤ q < ∞, 1 ≤ ν < ρ ≤ ∞ and the weight function $w_\{r\}(x) = 1/(|x|^\{r\})$ with 0 < r < n. Next, we prove the corresponding Trudinger type estimate, and obtain it in terms of the embedding $B^\{n/p,ρ\}_\{p\}(ℝⁿ) ↪ B^\{0,ν\}_\{Φ₀,w_\{r\}\}(ℝⁿ)$, where the function Φ₀ of the weighted Besov-Orlicz space $B^\{0,ν\}_\{Φ₀,w_\{r\}\}(ℝⁿ)$ is a Young function of the exponential type. Another point of interest is to embed $B^\{n/p,ρ\}_\{p\}(ℝⁿ)$ into the weighted Besov space $B^\{0,ρ\}_\{p,wₙ\}(ℝⁿ)$ with the critical weight wₙ(x) = 1/|x|ⁿ; more precisely, we prove $B^\{n/p,ρ\}_\{p\}(ℝⁿ) ↪ B^\{0,ρ\}_\{p,W_\{s\}\}(ℝⁿ)$ with the weight $W_\{s\}(x) = 1/(|x|ⁿ[log(e+1/|x|)]^\{s\})$ for any s > 1.},
author = {Hidemitsu Wadade},
journal = {Studia Mathematica},
keywords = {embeddings; Besov space; Gagliardo-Nirenberg type estimate; Trudinger type estimate; weighted Besov-Orlicz space},
language = {eng},
number = {3},
pages = {227-251},
title = {Remarks on the critical Besov space and its embedding into weighted Besov-Orlicz spaces},
url = {http://eudml.org/doc/285857},
volume = {201},
year = {2010},
}

TY - JOUR
AU - Hidemitsu Wadade
TI - Remarks on the critical Besov space and its embedding into weighted Besov-Orlicz spaces
JO - Studia Mathematica
PY - 2010
VL - 201
IS - 3
SP - 227
EP - 251
AB - We present several continuous embeddings of the critical Besov space $B^{n/p,ρ}_{p}(ℝⁿ)$. We first establish a Gagliardo-Nirenberg type estimate $||u||_{Ḃ^{0,ν}_{q,w_r}} ≤ Cₙ(1/(n-r))^{1/q + 1/ν - 1/ρ} (q/r)^{1/ν - 1/ρ} ||u||_{Ḃ^{0,ρ}_{p}}^{(n-r)p/nq}| |u||_{Ḃ^{n/p,ρ}_{p}}^{1-(n-r)p/nq}$, for 1 < p ≤ q < ∞, 1 ≤ ν < ρ ≤ ∞ and the weight function $w_{r}(x) = 1/(|x|^{r})$ with 0 < r < n. Next, we prove the corresponding Trudinger type estimate, and obtain it in terms of the embedding $B^{n/p,ρ}_{p}(ℝⁿ) ↪ B^{0,ν}_{Φ₀,w_{r}}(ℝⁿ)$, where the function Φ₀ of the weighted Besov-Orlicz space $B^{0,ν}_{Φ₀,w_{r}}(ℝⁿ)$ is a Young function of the exponential type. Another point of interest is to embed $B^{n/p,ρ}_{p}(ℝⁿ)$ into the weighted Besov space $B^{0,ρ}_{p,wₙ}(ℝⁿ)$ with the critical weight wₙ(x) = 1/|x|ⁿ; more precisely, we prove $B^{n/p,ρ}_{p}(ℝⁿ) ↪ B^{0,ρ}_{p,W_{s}}(ℝⁿ)$ with the weight $W_{s}(x) = 1/(|x|ⁿ[log(e+1/|x|)]^{s})$ for any s > 1.
LA - eng
KW - embeddings; Besov space; Gagliardo-Nirenberg type estimate; Trudinger type estimate; weighted Besov-Orlicz space
UR - http://eudml.org/doc/285857
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.