Moore-Penrose inverse of a hollow symmetric matrix and a predistance matrix
Hiroshi Kurata; Ravindra B. Bapat
Special Matrices (2016)
- Volume: 4, Issue: 1, page 270-282
- ISSN: 2300-7451
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] R. Balaji and R. B. Bapat, On Euclidean distance matrices, Linear Algebra Appl., 424 (2007), 108-117. Zbl1118.15024
- [2] R. B. Bapat, Graphs and matrices (2nd ed.), Springer, 2014. Zbl1301.05001
- [3] R. B. Bapat, S. J. Kirkland and M. Neumann, On distance matrices and Laplacians, Linear Algebra Appl., 401 (2005), 193- 209. Zbl1064.05097
- [4] A. Ben-Israel and T.N.E. Greville, Generalized Inverses: Theory and Applications, Wiley-Interscience, 1974. Zbl0305.15001
- [5] F. Critchley, On certain linear mappings between inner products and squared distance matrices, Linear Algebra Appl., 105 (1988), 91-107. Zbl0644.15003
- [6] J. C. Gower, Properties of Euclidean and non-Euclidean distance matrices. Linear Algebra Appl., 67 (1985),81-97. [WoS] Zbl0569.15016
- [7] R. L. Graham and L. Lovász, Distance matrix polynomials of trees, Adv. Math., 29 (1978), no. 1, 60-88.
- [8] R. L. Graham and H. O. Pollak, On the addressing problem for loop switching, Bell System Technology Journal, 50 (1971), 2495-2519. Zbl0228.94020
- [9] C. R. Johnson and P. Tarazaga, Connections between the real positive semidefinite and distancematrices completion problems, Linear Algebra Appl., 223/224 (1995), 375-391. Zbl0827.15032
- [10] H. Kurata and R. B. Bapat, Moore-Penrose inverse of a Euclidean distancematrix, Linear Algebra Appl., 472 (2015), 106-117. Zbl1310.15060
- [11] I. J. Schoenberg, Remarks to Maurice Fréchet’s article “Sur la définition axiomatique d’une classe d’espace distanciés vectoriellement applicable sur l’espace de Hilbert” Ann. of Math. (2), 36, 1935, 724-732. Zbl0012.30703
- [12] P. Tarazaga, T. L. Hayden and J. Wells, Circum-Euclidean distance matrices and faces, Linear Algebra Appl., 232 (1996), 77-96. [WoS] Zbl0837.15014