Generalization of discrimination-rate theorems of Chernoff and Stein

Igor Vajda

Kybernetika (1990)

  • Volume: 26, Issue: 4, page 273-288
  • ISSN: 0023-5954

How to cite

top

Vajda, Igor. "Generalization of discrimination-rate theorems of Chernoff and Stein." Kybernetika 26.4 (1990): 273-288. <http://eudml.org/doc/28590>.

@article{Vajda1990,
author = {Vajda, Igor},
journal = {Kybernetika},
keywords = {I-divergence; simple hypothesis; mixed errors; Bayes test; second kind errors; Neyman-Pearson tests; Rényi distances; inequalities; existence of an asymptotic Rényi distance; discrimination rates},
language = {eng},
number = {4},
pages = {273-288},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Generalization of discrimination-rate theorems of Chernoff and Stein},
url = {http://eudml.org/doc/28590},
volume = {26},
year = {1990},
}

TY - JOUR
AU - Vajda, Igor
TI - Generalization of discrimination-rate theorems of Chernoff and Stein
JO - Kybernetika
PY - 1990
PB - Institute of Information Theory and Automation AS CR
VL - 26
IS - 4
SP - 273
EP - 288
LA - eng
KW - I-divergence; simple hypothesis; mixed errors; Bayes test; second kind errors; Neyman-Pearson tests; Rényi distances; inequalities; existence of an asymptotic Rényi distance; discrimination rates
UR - http://eudml.org/doc/28590
ER -

References

top
  1. P. H. Algoet, T.M. Cover, A sandwich proof of the Shannon-McMillan-Breiman theorem, Ann. Probab. 16 (1988), 899-909. (1988) Zbl0653.28013MR0929085
  2. A. Bhattacharyya, On some analogous to the amount of information and their uses in statistical estimation, Sankhya 8 (1946), 1-14. (1946) MR0020242
  3. H. Chernoff, A measure of asymptotic efficiency for tests of a hypothesis based on a sum of observations, Ann. Math. Statist. 23 (1952), 493-507. (1952) MR0057518
  4. H. Chernoff, Large sample theory: Parametric case, Ann. Math. Statist. 27 (1956), 1 - 22. (1956) Zbl0072.35703MR0076245
  5. R. S. Ellis, Large deviations for a general class of random vectors, Ann. Probab. 12 (1984), 1-12. (1984) Zbl0534.60026MR0723726
  6. R. S. Ellis, Entropy, Large Deviations, and Statistical Mechanics, Springer-Verlag. Berlin-Heidelberg-New York 1985. (1985) Zbl0566.60097
  7. I. I. Gikhman, A. V. Skorokhod, Stochastic Differential Equations (in Russian), Naukova Dumka, Kiev 1986. (1986) 
  8. J. Hájek, A property of J-divergences or marginal probability distributions, Czechoslovak Math. J. 8 (1958), 460-463. (1958) MR0099712
  9. J. Hájek, On a property of normal distributions of an arbitrary stochastic process, Czechoslovak Math. J. 8 (1958), 610-618. (1958) MR0104290
  10. A. Janssen, Asymptotic properties of Neyman-Pearson test for infinite Kullback-Leibler information, Ann. Statist. 14 (1986), 1068-1079. (1986) MR0856806
  11. M. Janžura, Divergences of Gauss-Markov random fields with application to statistical inference, Kybernetika 24 (1988), 6, 401 - 412. (1988) MR0975850
  12. S. Kakutani, On equivalence of infinite product measures, Ann. of Math. 49 (1948), 214 - 226. (1948) Zbl0030.02303MR0023331
  13. E. I. Kolomietz, Asymptotic behaviour of type II errors of Neyman-Pearson test (in Russian), Teor. Veroyatnost. i Primenen. 33 (1986), 503 - 522. (1986) 
  14. S. H. Koopmans, Asymptotic rate of discrimination for Markov processes, Ann. Math. Statist. 31 (1960), 982-994. (1960) Zbl0096.12603MR0119368
  15. O. Kraft, D. Plachky, Bounds for the power of likelihood ratio test and their asymptotic properties, Ann. Math. Statist. 41 (1970), 1646-1654. (1970) MR0272101
  16. S. Kullback J. C Keegel, and J. H. Kullback, Topics in Statistical Information Theory, Springer-Verlag, Berlin-Heidelberg-New York 1987. (1987) MR0904477
  17. H. Künsch, Thermodynamics and statistical analysis of Gaussian random fields, Z. Wahrsch. verw. Geb. 58 (1981) 407-421. (1981) MR0639149
  18. E. L. Lehman, Testing Statistical Hypotheses, J. Wiley, New York 1959. (1959) MR0852406
  19. F. Liese, Hellinger integrals of diffusion processes, Statistics 17 (1986), 63-78. (1986) Zbl0598.60042MR0827946
  20. F. Liese, I. Vajda, Convex Statistical Distances, Teubner, Leipzig 1987. (1987) Zbl0656.62004MR0926905
  21. J. Mémin, A. N. Shiryayev, Distances de Hellinger-Kakutani des lois correspondant á acroissements indépendants, Z. Wahrsch. verw. Geb. 70 (1985), 67-89. (1985) MR0795789
  22. T. Nemetz, On the α -divergence rate for Markov-dependent hypotheses, Problems Control Inform. Theory 5(1974), 147-155. (1974) Zbl0303.62005MR0426254
  23. C M. Newman, The inner product of path space measures corresponding to random processes with independent increments, Bull. Amer. Math. Soc. 78 (1982), 268 - 272. (1982) MR0290453
  24. C M. Newman, The orthogonality of independent increment processes, In: Topics in Probability Theory (D. W. Strook, S. R. S. Varadhan, eds.), Convent Inst, of Math. Sciences, New York 1973, pp. 93-111. (1973) Zbl0269.60055MR0448532
  25. C M. Newman, B. W. Stuck, Chernoff bounds for discriminating between two Markov processes, Stochastics 2 (1979), 139-153. (1979) Zbl0408.62070MR0528906
  26. J. Oosterhooff, W. R. van Zwett, A note on contiguity and Hellinger distance, In: Contributions to Statistics (J. Hájek Memorial Volume, J. Jurečková, ed.), Reidel, Dordrecht 1979. (1979) MR0561267
  27. A. Perez, Notions generalises d'incertitude, d'entropie et d'information du point de vue de la theorie de martingales, In: Trans. 1st Prague Conf. on Inform. Theory, Statist. Dec. Functions, Random Processes. Publ. House Czechosl. Acad. Sci., Prague 1957, pp. 183 -206. (1957) MR0099889
  28. A. Perez, Generalization of ChernofTs result on the asymptote discernibility of two random processes, Colloq. Math. Soc. Janos Bolyai 9 (1974), 619 - 632. (1974) MR0388596
  29. M. S. Pinsker, Information and Information Stability of Random Variables and Processes, Holden-Day, San Francisco 1964. (1964) Zbl0125.09202MR0213190
  30. A. Rényi, On measures of entropy and information. In: Proc. 4th Berkeley Symp. on Probab, Theory Math. Statist., Vol. 1, Berkeley Univ. Press, Berkeley 1961, pp. 447-561. (1961) MR0132570
  31. I. Vajda, Limit theorems for total variation of cartesian product measures, Studia Sci. Math. Hungar. 6 (1971), 317-333. (1971) MR0310950
  32. I. Vajda, Theory of Statistical Inference and Information, Kluwer, Dordrecht-Boston 1989. (1989) Zbl0711.62002
  33. A. Wald, Statistical Decision Functions, J. Wiley, New York 1961. (1961) MR0036976

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.