Applications of some results of infinite-dimensional topology to the topological classification of operator images

Taras Banakh; Tadeusz Dobrowolski; Anatoliĭ Plichko

  • 2000

Abstract

top
This volume consists of three relatively independent articles devoted to the topological study of the so-called operator images and weak unit balls of Banach spaces. These articles are: “The topological classification of weak unit balls of Banach spaces” by T. Banakh, “The topological and Borel classification of operator images” by T. Banakh, T. Dobrowolski and A. Plichko, and “Operator images homeomorphic to Σ ω ” by T. Banakh. The articles summarize investigations that has been done by these authors for the past 10 years. All that started in the late 80s with the following question by T. Dobrowolski: Is the topological type of an operator image fully determined by its Borel type? Let us recall that an operator image is a space of the form TX, where T:X → Y is a continuous linear operator between Fréchet spaces (operator images often appear in analysis and topology, for example, the space C p * ( X ) of bounded continuous functions on a countable space X with the topology of pointwise convergence can be considered as an operator image of the Banach space C(βX)). In the early 90s T. Dobrowolski obtained a positive answer to the above question for operator images of low Borel complexity. Namely, he showed that every infinite-dimensional separable σ-complete operator image is homeomorphic to one of the spaces: l², Σ, or Σ × l², where Σ is the linear hull of the standard Hilbert cube in the Hilbert space l² (a space is σ-complete if it is a countable union of closed completely-metrizable subspaces). The same result was proved independently by T. Banakh. The topological structure of operator images of higher Borel complexity remained unclear. However, it was known that the topological type of C p * ( X ) is determined by its Borel type for the case of the second multiplicative Borel class. More precisely, each absolute F σ δ -space C p * ( X ) over a nondiscrete space X is homeomorphic to Σ ω . Thus the conjecture appeared: The spaces l², Σ, Σ × l² and Σ ω exhaust all possible topological types of infinite-dimensional operator images that are absolute F σ δ -spaces. Numerous attempts to confirm this conjecture were unsuccessful (though many of those attempts lead to very fruitful developments in infinite-dimensional topology). Finally, in 1998, T. Banakh found a counterexample to the above conjecture. The counterexample came from the study of the weak topology of the closed unit balls of Banach spaces. It turned out that the topological type of an operator image TX depends much on the geometric properties of the Fréchet space X as well as on the properties of the weak topology of X. This topic, which is of independent interest, is considered in detail in the first article of this volume, that is, “The topological classification of weak unit balls of Banach spaces”. An example of a pathological Banach space constructed in the last section of this article is applied in the remaining two articles, strictly devoted to studying operator images. The first of them, “The topological and Borel classification of operator images”, deals with some general questions in the area, and also with operator images of high Borel complexity, while the second one is restricted to the study of operator images homeomorphic to Σ ω . We refer the reader to Introductions that the three articles start with for more detailed information on their contents.

How to cite

top

Taras Banakh, Tadeusz Dobrowolski, and Anatoliĭ Plichko. Applications of some results of infinite-dimensional topology to the topological classification of operator images. 2000. <http://eudml.org/doc/285991>.

@book{TarasBanakh2000,
abstract = {This volume consists of three relatively independent articles devoted to the topological study of the so-called operator images and weak unit balls of Banach spaces. These articles are: “The topological classification of weak unit balls of Banach spaces” by T. Banakh, “The topological and Borel classification of operator images” by T. Banakh, T. Dobrowolski and A. Plichko, and “Operator images homeomorphic to $Σ^\{ω\}$” by T. Banakh. The articles summarize investigations that has been done by these authors for the past 10 years. All that started in the late 80s with the following question by T. Dobrowolski: Is the topological type of an operator image fully determined by its Borel type? Let us recall that an operator image is a space of the form TX, where T:X → Y is a continuous linear operator between Fréchet spaces (operator images often appear in analysis and topology, for example, the space $C_\{p\}*(X)$ of bounded continuous functions on a countable space X with the topology of pointwise convergence can be considered as an operator image of the Banach space C(βX)). In the early 90s T. Dobrowolski obtained a positive answer to the above question for operator images of low Borel complexity. Namely, he showed that every infinite-dimensional separable σ-complete operator image is homeomorphic to one of the spaces: l², Σ, or Σ × l², where Σ is the linear hull of the standard Hilbert cube in the Hilbert space l² (a space is σ-complete if it is a countable union of closed completely-metrizable subspaces). The same result was proved independently by T. Banakh. The topological structure of operator images of higher Borel complexity remained unclear. However, it was known that the topological type of $C_\{p\}*(X)$ is determined by its Borel type for the case of the second multiplicative Borel class. More precisely, each absolute $F_\{σδ\}$-space $C_\{p\}*(X)$ over a nondiscrete space X is homeomorphic to $Σ^\{ω\}$. Thus the conjecture appeared: The spaces l², Σ, Σ × l² and $Σ^\{ω\}$ exhaust all possible topological types of infinite-dimensional operator images that are absolute $F_\{σδ\}$-spaces. Numerous attempts to confirm this conjecture were unsuccessful (though many of those attempts lead to very fruitful developments in infinite-dimensional topology). Finally, in 1998, T. Banakh found a counterexample to the above conjecture. The counterexample came from the study of the weak topology of the closed unit balls of Banach spaces. It turned out that the topological type of an operator image TX depends much on the geometric properties of the Fréchet space X as well as on the properties of the weak topology of X. This topic, which is of independent interest, is considered in detail in the first article of this volume, that is, “The topological classification of weak unit balls of Banach spaces”. An example of a pathological Banach space constructed in the last section of this article is applied in the remaining two articles, strictly devoted to studying operator images. The first of them, “The topological and Borel classification of operator images”, deals with some general questions in the area, and also with operator images of high Borel complexity, while the second one is restricted to the study of operator images homeomorphic to $Σ^\{ω\}$. We refer the reader to Introductions that the three articles start with for more detailed information on their contents.},
author = {Taras Banakh, Tadeusz Dobrowolski, Anatoliĭ Plichko},
keywords = {Borel classification of operator images; geometric properties of a Banach space; topological properties of its weak unit ball; Kadets norms; Hilbert cube; Fréchet spaces; injective weakly compact linear operator; Banach lattice},
language = {eng},
title = {Applications of some results of infinite-dimensional topology to the topological classification of operator images},
url = {http://eudml.org/doc/285991},
year = {2000},
}

TY - BOOK
AU - Taras Banakh
AU - Tadeusz Dobrowolski
AU - Anatoliĭ Plichko
TI - Applications of some results of infinite-dimensional topology to the topological classification of operator images
PY - 2000
AB - This volume consists of three relatively independent articles devoted to the topological study of the so-called operator images and weak unit balls of Banach spaces. These articles are: “The topological classification of weak unit balls of Banach spaces” by T. Banakh, “The topological and Borel classification of operator images” by T. Banakh, T. Dobrowolski and A. Plichko, and “Operator images homeomorphic to $Σ^{ω}$” by T. Banakh. The articles summarize investigations that has been done by these authors for the past 10 years. All that started in the late 80s with the following question by T. Dobrowolski: Is the topological type of an operator image fully determined by its Borel type? Let us recall that an operator image is a space of the form TX, where T:X → Y is a continuous linear operator between Fréchet spaces (operator images often appear in analysis and topology, for example, the space $C_{p}*(X)$ of bounded continuous functions on a countable space X with the topology of pointwise convergence can be considered as an operator image of the Banach space C(βX)). In the early 90s T. Dobrowolski obtained a positive answer to the above question for operator images of low Borel complexity. Namely, he showed that every infinite-dimensional separable σ-complete operator image is homeomorphic to one of the spaces: l², Σ, or Σ × l², where Σ is the linear hull of the standard Hilbert cube in the Hilbert space l² (a space is σ-complete if it is a countable union of closed completely-metrizable subspaces). The same result was proved independently by T. Banakh. The topological structure of operator images of higher Borel complexity remained unclear. However, it was known that the topological type of $C_{p}*(X)$ is determined by its Borel type for the case of the second multiplicative Borel class. More precisely, each absolute $F_{σδ}$-space $C_{p}*(X)$ over a nondiscrete space X is homeomorphic to $Σ^{ω}$. Thus the conjecture appeared: The spaces l², Σ, Σ × l² and $Σ^{ω}$ exhaust all possible topological types of infinite-dimensional operator images that are absolute $F_{σδ}$-spaces. Numerous attempts to confirm this conjecture were unsuccessful (though many of those attempts lead to very fruitful developments in infinite-dimensional topology). Finally, in 1998, T. Banakh found a counterexample to the above conjecture. The counterexample came from the study of the weak topology of the closed unit balls of Banach spaces. It turned out that the topological type of an operator image TX depends much on the geometric properties of the Fréchet space X as well as on the properties of the weak topology of X. This topic, which is of independent interest, is considered in detail in the first article of this volume, that is, “The topological classification of weak unit balls of Banach spaces”. An example of a pathological Banach space constructed in the last section of this article is applied in the remaining two articles, strictly devoted to studying operator images. The first of them, “The topological and Borel classification of operator images”, deals with some general questions in the area, and also with operator images of high Borel complexity, while the second one is restricted to the study of operator images homeomorphic to $Σ^{ω}$. We refer the reader to Introductions that the three articles start with for more detailed information on their contents.
LA - eng
KW - Borel classification of operator images; geometric properties of a Banach space; topological properties of its weak unit ball; Kadets norms; Hilbert cube; Fréchet spaces; injective weakly compact linear operator; Banach lattice
UR - http://eudml.org/doc/285991
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.