Displaying similar documents to “Applications of some results of infinite-dimensional topology to the topological classification of operator images”

On the complexity of subspaces of S ω

Carlos Uzcátegui (2003)

Fundamenta Mathematicae

Similarity:

Let (X,τ) be a countable topological space. We say that τ is an analytic (resp. Borel) topology if τ as a subset of the Cantor set 2 X (via characteristic functions) is an analytic (resp. Borel) set. For example, the topology of the Arkhangel’skiĭ-Franklin space S ω is F σ δ . In this paper we study the complexity, in the sense of the Borel hierarchy, of subspaces of S ω . We show that S ω has subspaces with topologies of arbitrarily high Borel rank and it also has subspaces with a non-Borel topology....

On topological groups with a small base and metrizability

Saak Gabriyelyan, Jerzy Kąkol, Arkady Leiderman (2015)

Fundamenta Mathematicae

Similarity:

A (Hausdorff) topological group is said to have a -base if it admits a base of neighbourhoods of the unit, U α : α , such that U α U β whenever β ≤ α for all α , β . The class of all metrizable topological groups is a proper subclass of the class T G of all topological groups having a -base. We prove that a topological group is metrizable iff it is Fréchet-Urysohn and has a -base. We also show that any precompact set in a topological group G T G is metrizable, and hence G is strictly angelic. We deduce from...

The Lindelöf property in Banach spaces

B. Cascales, I. Namioka, J. Orihuela (2003)

Studia Mathematica

Similarity:

A topological space (T,τ) is said to be fragmented by a metric d on T if each non-empty subset of T has non-empty relatively open subsets of arbitrarily small d-diameter. The basic theorem of the present paper is the following. Let (M,ϱ) be a metric space with ϱ bounded and let D be an arbitrary index set. Then for a compact subset K of the product space M D the following four conditions are equivalent: (i) K is fragmented by d D , where, for each S ⊂ D, d S ( x , y ) = s u p ϱ ( x ( t ) , y ( t ) ) : t S . (ii) For each countable subset...

The Ascoli property for function spaces and the weak topology of Banach and Fréchet spaces

S. Gabriyelyan, J. Kąkol, G. Plebanek (2016)

Studia Mathematica

Similarity:

Following Banakh and Gabriyelyan (2016) we say that a Tychonoff space X is an Ascoli space if every compact subset of C k ( X ) is evenly continuous; this notion is closely related to the classical Ascoli theorem. Every k -space, hence any k-space, is Ascoli. Let X be a metrizable space. We prove that the space C k ( X ) is Ascoli iff C k ( X ) is a k -space iff X is locally compact. Moreover, C k ( X ) endowed with the weak topology is Ascoli iff X is countable and discrete. Using some basic concepts from probability...

Modifications of the double arrow space and related Banach spaces C(K)

Witold Marciszewski (2008)

Studia Mathematica

Similarity:

We consider the class of compact spaces K A which are modifications of the well known double arrow space. The space K A is obtained from a closed subset K of the unit interval [0,1] by “splitting” points from a subset A ⊂ K. The class of all such spaces coincides with the class of separable linearly ordered compact spaces. We prove some results on the topological classification of K A spaces and on the isomorphic classification of the Banach spaces C ( K A ) .

Nonnormality of remainders of some topological groups

Aleksander V. Arhangel'skii, J. van Mill (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

It is known that every remainder of a topological group is Lindelöf or pseudocompact. Motivated by this result, we study in this paper when a topological group G has a normal remainder. In a previous paper we showed that under mild conditions on G , the Continuum Hypothesis implies that if the Čech-Stone remainder G * of G is normal, then it is Lindelöf. Here we continue this line of investigation, mainly for the case of precompact groups. We show that no pseudocompact group, whose weight...

Banach spaces of bounded Szlenk index

E. Odell, Th. Schlumprecht, A. Zsák (2007)

Studia Mathematica

Similarity:

For a countable ordinal α we denote by α the class of separable, reflexive Banach spaces whose Szlenk index and the Szlenk index of their dual are bounded by α. We show that each α admits a separable, reflexive universal space. We also show that spaces in the class ω α · ω embed into spaces of the same class with a basis. As a consequence we deduce that each α is analytic in the Effros-Borel structure of subspaces of C[0,1].

Failure of the Factor Theorem for Borel pre-Hilbert spaces

Tadeusz Dobrowolski, Witold Marciszewski (2002)

Fundamenta Mathematicae

Similarity:

In every infinite-dimensional Fréchet space X, we construct a linear subspace E such that E is an F σ δ σ -subset of X and contains a retract R so that R × E ω is not homeomorphic to E ω . This shows that Toruńczyk’s Factor Theorem fails in the Borel case.

Homeomorphism groups of Sierpiński carpets and Erdős space

Jan J. Dijkstra, Dave Visser (2010)

Fundamenta Mathematicae

Similarity:

Erdős space is the “rational” Hilbert space, that is, the set of vectors in ℓ² with all coordinates rational. Erdős proved that is one-dimensional and homeomorphic to its own square × , which makes it an important example in dimension theory. Dijkstra and van Mill found topological characterizations of . Let M n + 1 , n ∈ ℕ, be the n-dimensional Menger continuum in n + 1 , also known as the n-dimensional Sierpiński carpet, and let D be a countable dense subset of M n + 1 . We consider the topological group...

A countably cellular topological group all of whose countable subsets are closed need not be -factorizable

Mihail G. Tkachenko (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We construct a Hausdorff topological group G such that 1 is a precalibre of G (hence, G has countable cellularity), all countable subsets of G are closed and C -embedded in G , but G is not -factorizable. This solves Problem 8.6.3 from the book “Topological Groups and Related Structures" (2008) in the negative.

Borel parts of the spectrum of an operator and of the operator algebra of a separable Hilbert space

Piotr Niemiec (2012)

Studia Mathematica

Similarity:

For a linear operator T in a Banach space let σ p ( T ) denote the point spectrum of T, let σ p , n ( T ) for finite n > 0 be the set of all λ σ p ( T ) such that dim ker(T - λ) = n and let σ p , ( T ) be the set of all λ σ p ( T ) for which ker(T - λ) is infinite-dimensional. It is shown that σ p ( T ) is σ , σ p , ( T ) is σ δ and for each finite n the set σ p , n ( T ) is the intersection of an σ set and a δ set provided T is closable and the domain of T is separable and weakly σ-compact. For closed densely defined operators in a separable Hilbert space a more...

On the Hausdorff Dimension of Topological Subspaces

Tomasz Szarek, Maciej Ślęczka (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

It is shown that every Polish space X with d i m T X d admits a compact subspace Y such that d i m H Y d where d i m T and d i m H denote the topological and Hausdorff dimensions, respectively.

Hyperspaces of Finite Sets in Universal Spaces for Absolute Borel Classes

Kotaro Mine, Katsuro Sakai, Masato Yaguchi (2005)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

By Fin(X) (resp. F i n k ( X ) ), we denote the hyperspace of all non-empty finite subsets of X (resp. consisting of at most k points) with the Vietoris topology. Let ℓ₂(τ) be the Hilbert space with weight τ and f ( τ ) the linear span of the canonical orthonormal basis of ℓ₂(τ). It is shown that if E = f ( τ ) or E is an absorbing set in ℓ₂(τ) for one of the absolute Borel classes α ( τ ) and α ( τ ) of weight ≤ τ (α > 0) then Fin(E) and each F i n k ( E ) are homeomorphic to E. More generally, if X is a connected E-manifold then Fin(X)...

On universality of countable and weak products of sigma hereditarily disconnected spaces

Taras Banakh, Robert Cauty (2001)

Fundamenta Mathematicae

Similarity:

Suppose a metrizable separable space Y is sigma hereditarily disconnected, i.e., it is a countable union of hereditarily disconnected subspaces. We prove that the countable power X ω of any subspace X ⊂ Y is not universal for the class ₂ of absolute G δ σ -sets; moreover, if Y is an absolute F σ δ -set, then X ω contains no closed topological copy of the Nagata space = W(I,ℙ); if Y is an absolute G δ -set, then X ω contains no closed copy of the Smirnov space σ = W(I,0). On the other hand, the countable...

Remarks on flat and differential K -theory

Man-Ho Ho (2014)

Annales mathématiques Blaise Pascal

Similarity:

In this note we prove some results in flat and differential K -theory. The first one is a proof of the compatibility of the differential topological index and the flat topological index by a direct computation. The second one is the explicit isomorphisms between Bunke-Schick differential K -theory and Freed-Lott differential K -theory.

Borel classes of uniformizations of sets with large sections

Petr Holický (2010)

Fundamenta Mathematicae

Similarity:

We give several refinements of known theorems on Borel uniformizations of sets with “large sections”. In particular, we show that a set B ⊂ [0,1] × [0,1] which belongs to Σ α , α ≥ 2, and which has all “vertical” sections of positive Lebesgue measure, has a Π α uniformization which is the graph of a Σ α -measurable mapping. We get a similar result for sets with nonmeager sections. As a corollary we derive an improvement of Srivastava’s theorem on uniformizations for Borel sets with G δ sections. ...

Decomposing Borel functions using the Shore-Slaman join theorem

Takayuki Kihara (2015)

Fundamenta Mathematicae

Similarity:

Jayne and Rogers proved that every function from an analytic space into a separable metrizable space is decomposable into countably many continuous functions with closed domains if and only if the preimage of each F σ set under that function is again F σ . Many researchers conjectured that the Jayne-Rogers theorem can be generalized to all finite levels of Borel functions. In this paper, by using the Shore-Slaman join theorem on the Turing degrees, we show the following variant of the Jayne-Rogers...

Linear topological properties of the Lumer-Smirnov class of the polydisc

Marek Nawrocki (1992)

Studia Mathematica

Similarity:

Linear topological properties of the Lumer-Smirnov class L N ( n ) of the unit polydisc n are studied. The topological dual and the Fréchet envelope are described. It is proved that L N ( n ) has a weak basis but it is nonseparable in its original topology. Moreover, it is shown that the Orlicz-Pettis theorem fails for L N ( n ) .

An irrational problem

Franklin D. Tall (2002)

Fundamenta Mathematicae

Similarity:

Given a topological space ⟨X,⟩ ∈ M, an elementary submodel of set theory, we define X M to be X ∩ M with topology generated by U M : U M . Suppose X M is homeomorphic to the irrationals; must X = X M ? We have partial results. We also answer a question of Gruenhage by showing that if X M is homeomorphic to the “Long Cantor Set”, then X = X M .

James boundaries and σ-fragmented selectors

B. Cascales, M. Muñoz, J. Orihuela (2008)

Studia Mathematica

Similarity:

We study the boundary structure for w*-compact subsets of dual Banach spaces. To be more precise, for a Banach space X, 0 < ϵ < 1 and a subset T of the dual space X* such that ⋃ B(t,ϵ): t ∈ T contains a James boundary for B X * we study different kinds of conditions on T, besides T being countable, which ensure that X * = s p a n T ¯ | | · | | . (SP) We analyze two different non-separable cases where the equality (SP) holds: (a) if J : X 2 B X * is the duality mapping and there exists a σ-fragmented map f: X → X* such that...

On star covering properties related to countable compactness and pseudocompactness

Marcelo D. Passos, Heides L. Santana, Samuel G. da Silva (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove a number of results on star covering properties which may be regarded as either generalizations or specializations of topological properties related to the ones mentioned in the title of the paper. For instance, we give a new, entirely combinatorial proof of the fact that Ψ -spaces constructed from infinite almost disjoint families are not star-compact. By going a little further we conclude that if X is a star-compact space within a certain class, then X is neither first countable...

Pisier's inequality revisited

Tuomas Hytönen, Assaf Naor (2013)

Studia Mathematica

Similarity:

Given a Banach space X, for n ∈ ℕ and p ∈ (1,∞) we investigate the smallest constant ∈ (0,∞) for which every n-tuple of functions f₁,...,fₙ: -1,1ⁿ → X satisfies - 1 , 1 | | j = 1 n j f j ( ε ) | | p d μ ( ε ) p - 1 , 1 - 1 , 1 | | j = 1 n δ j Δ f j ( ε ) | | p d μ ( ε ) d μ ( δ ) , where μ is the uniform probability measure on the discrete hypercube -1,1ⁿ, and j j = 1 n and Δ = j = 1 n j are the hypercube partial derivatives and the hypercube Laplacian, respectively. Denoting this constant by p ( X ) , we show that p ( X ) k = 1 n 1 / k for every Banach space (X,||·||). This extends the classical Pisier inequality, which corresponds to the special...

Sequentially Right Banach spaces of order p

Mahdi Dehghani, Mohammad B. Dehghani, Mohammad S. Moshtaghioun (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We introduce and study two new classes of Banach spaces, the so-called sequentially Right Banach spaces of order p , and those defined by the dual property, the sequentially Right * Banach spaces of order p for 1 p . These classes of Banach spaces are characterized by the notions of L p -limited sets in the corresponding dual space and R p * subsets of the involved Banach space, respectively. In particular, we investigate whether the injective tensor product of a Banach space X and a reflexive Banach...

On monotonic functions from the unit interval into a Banach space with uncountable sets of points of discontinuity

Artur Michalak (2003)

Studia Mathematica

Similarity:

We say that a function f from [0,1] to a Banach space X is increasing with respect to E ⊂ X* if x* ∘ f is increasing for every x* ∈ E. We show that if f: [0,1] → X is an increasing function with respect to a norming subset E of X* with uncountably many points of discontinuity and Q is a countable dense subset of [0,1], then (1) l i n f ( [ 0 , 1 ] ) ¯ contains an order isomorphic copy of D(0,1), (2) l i n f ( Q ) ¯ contains an isomorphic copy of C([0,1]), (3) l i n f ( [ 0 , 1 ] ) ¯ / l i n f ( Q ) ¯ contains an isomorphic copy of c₀(Γ) for some uncountable...