The extension of the Krein-Šmulian theorem for order-continuous Banach lattices
Antonio S. Granero; Marcos Sánchez
Banach Center Publications (2008)
- Volume: 79, Issue: 1, page 79-93
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topAntonio S. Granero, and Marcos Sánchez. "The extension of the Krein-Šmulian theorem for order-continuous Banach lattices." Banach Center Publications 79.1 (2008): 79-93. <http://eudml.org/doc/286276>.
@article{AntonioS2008,
	abstract = {If X is a Banach space and C ⊂ X a convex subset, for x** ∈ X** and A ⊂ X** let d(x**,C) = inf||x**-x||: x ∈ C be the distance from x** to C and d̂(A,C) = supd(a,C): a ∈ A. Among other things, we prove that if X is an order-continuous Banach lattice and K is a w*-compact subset of X** we have: (i) $d̂(\overline\{co\}^\{w*\}(K),X) ≤ 2d̂(K,X)$ and, if K ∩ X is w*-dense in K, then $d̂(\overline\{co\}^\{w*\}(K),X) = d̂(K,X)$; (ii) if X fails to have a copy of ℓ₁(ℵ₁), then $d̂(\overline\{co\}^\{w*\}(K),X) = d̂(K,X)$; (iii) if X has a 1-symmetric basis, then $d̂(\overline\{co\}^\{w*\}(K),X) = d̂(K,X)$.},
	author = {Antonio S. Granero, Marcos Sánchez},
	journal = {Banach Center Publications},
	keywords = {Krein-Shmulian theorem; Banach lattices; 1-symmetric spaces},
	language = {eng},
	number = {1},
	pages = {79-93},
	title = {The extension of the Krein-Šmulian theorem for order-continuous Banach lattices},
	url = {http://eudml.org/doc/286276},
	volume = {79},
	year = {2008},
}
TY  - JOUR
AU  - Antonio S. Granero
AU  - Marcos Sánchez
TI  - The extension of the Krein-Šmulian theorem for order-continuous Banach lattices
JO  - Banach Center Publications
PY  - 2008
VL  - 79
IS  - 1
SP  - 79
EP  - 93
AB  - If X is a Banach space and C ⊂ X a convex subset, for x** ∈ X** and A ⊂ X** let d(x**,C) = inf||x**-x||: x ∈ C be the distance from x** to C and d̂(A,C) = supd(a,C): a ∈ A. Among other things, we prove that if X is an order-continuous Banach lattice and K is a w*-compact subset of X** we have: (i) $d̂(\overline{co}^{w*}(K),X) ≤ 2d̂(K,X)$ and, if K ∩ X is w*-dense in K, then $d̂(\overline{co}^{w*}(K),X) = d̂(K,X)$; (ii) if X fails to have a copy of ℓ₁(ℵ₁), then $d̂(\overline{co}^{w*}(K),X) = d̂(K,X)$; (iii) if X has a 1-symmetric basis, then $d̂(\overline{co}^{w*}(K),X) = d̂(K,X)$.
LA  - eng
KW  - Krein-Shmulian theorem; Banach lattices; 1-symmetric spaces
UR  - http://eudml.org/doc/286276
ER  - 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 