Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Distances to convex sets

Antonio S. GraneroMarcos Sánchez — 2007

Studia Mathematica

If X is a Banach space and C a convex subset of X*, we investigate whether the distance d ̂ ( c o ¯ w * ( K ) , C ) : = s u p i n f | | k - c | | : c C : k c o ¯ w * ( K ) from c o ¯ w * ( K ) to C is M-controlled by the distance d̂(K,C) (that is, if d ̂ ( c o ¯ w * ( K ) , C ) M d ̂ ( K , C ) for some 1 ≤ M < ∞), when K is any weak*-compact subset of X*. We prove, for example, that: (i) C has 3-control if C contains no copy of the basis of ℓ₁(c); (ii) C has 1-control when C ⊂ Y ⊂ X* and Y is a subspace with weak*-angelic closed dual unit ball B(Y*); (iii) if C is a convex subset of X and X is considered canonically embedded into...

The extension of the Krein-Šmulian theorem for order-continuous Banach lattices

Antonio S. GraneroMarcos Sánchez — 2008

Banach Center Publications

If X is a Banach space and C ⊂ X a convex subset, for x** ∈ X** and A ⊂ X** let d(x**,C) = inf||x**-x||: x ∈ C be the distance from x** to C and d̂(A,C) = supd(a,C): a ∈ A. Among other things, we prove that if X is an order-continuous Banach lattice and K is a w*-compact subset of X** we have: (i) d ̂ ( c o ¯ w * ( K ) , X ) 2 d ̂ ( K , X ) and, if K ∩ X is w*-dense in K, then d ̂ ( c o ¯ w * ( K ) , X ) = d ̂ ( K , X ) ; (ii) if X fails to have a copy of ℓ₁(ℵ₁), then d ̂ ( c o ¯ w * ( K ) , X ) = d ̂ ( K , X ) ; (iii) if X has a 1-symmetric basis, then d ̂ ( c o ¯ w * ( K ) , X ) = d ̂ ( K , X ) .

Page 1

Download Results (CSV)