# A solution of the continuous Lyapunov equation by means of power series

Kybernetika (1986)

- Volume: 22, Issue: 3, page 209-217
- ISSN: 0023-5954

## Access Full Article

top## How to cite

topJežek, Jan. "A solution of the continuous Lyapunov equation by means of power series." Kybernetika 22.3 (1986): 209-217. <http://eudml.org/doc/28631>.

@article{Ježek1986,

author = {Ježek, Jan},

journal = {Kybernetika},

keywords = {stationary Lyapunov equation; continuous Lyapunov equation; Taylor expansion},

language = {eng},

number = {3},

pages = {209-217},

publisher = {Institute of Information Theory and Automation AS CR},

title = {A solution of the continuous Lyapunov equation by means of power series},

url = {http://eudml.org/doc/28631},

volume = {22},

year = {1986},

}

TY - JOUR

AU - Ježek, Jan

TI - A solution of the continuous Lyapunov equation by means of power series

JO - Kybernetika

PY - 1986

PB - Institute of Information Theory and Automation AS CR

VL - 22

IS - 3

SP - 209

EP - 217

LA - eng

KW - stationary Lyapunov equation; continuous Lyapunov equation; Taylor expansion

UR - http://eudml.org/doc/28631

ER -

## References

top- F. R. Gantmacher, The Theory of Matrices, vol. 1. Chelsea, New York 1966. (1966) MR1657129
- P. Lancaster, Theory of Matrices, Academic Press, New York 1969. (1969) Zbl0186.05301MR0245579
- W. Givens, Elementary divisors and some properties of the Lyapunov mapping $X\to AX+X{A}^{*}$, Argonne National Laboratory, Argonne, Illinois 1961. (1961)
- P. Hagander, Numerical solution of ${A}^{T}S+SA+Q=0$, Lund Institute of Technology, Division of Automatic Control, Lund, Sweden 1969. (1969) MR0312703
- V. Kučera, The matrix equation AX + XB = C, SIAM J. Appl. Math. 26 (1974), 1, 15-25. (1974) MR0340280
- M. C. Pease, Methods of Matrix Algebra, Academic Press, New York 1965. (1965) Zbl0145.03701MR0207719
- P. Lancaster, Explicit solution of the matrix equations, SIAM Rev. 12 (1970), 544-566. (1970) MR0279115
- J. Štěcha A. Kozáčiková, J. Kozáčik, Algorithm for solution of equations $PA+{A}^{T}P=-Q$ and ${M}^{T}PM-P=-Q$ resulting in Lyapunov stability analysis of linear systems, Kybernetika 9 (1973), 1, 62-71. (1973) MR0327355
- S. Barnett, Remarks on solution of AX + XB = C, Electron. Lett. 7 (1971), p. 385. (1971) MR0319360
- C. S. Lu, Solution of the matrix equation AX + XB = C, Electron. Lett. 7 (1971), 185-186. (1971) MR0319359
- C. S. Berger, A numerical solution of the matrix equation $P=\Phi P{\Phi}^{T}+S$, IEEE Trans. Automat. Control AC-16 (1971), 4, 381-382. (1971)
- A. Jameson, Solution of the equation AX + XB = C by inversion of an M x M or N X N matrix, SIAM J. Appl. Math. 16 (1968), 1020-1023. (1968) MR0234974
- M. Záruba, The Stationary Solution of the Riccati Equation, (in Czech). ÚTIA ČSAV Research Report 371, Prague 1973. (1973)
- E. C. Ma, A finite series solution of the matrix equation AX - XB = C, SIAM J. Appl. Math. 74 (1966), 490-495. (1966) Zbl0144.27003MR0201456
- E. J. Davison, F. T. Man, The numerical solution of ${A}^{\text{'}}Q+QA=-C$, IEEE Trans. Automat. Control AC-13 (1968), 4, 448-449. (1968) MR0235707
- A. Trampus, A canonical basis for the matrix transormation $X\to AX+XB$, J. Math. Anal. Appl. 14 (1966), 242-252. (1966) MR0190157
- J. Ježek, UTIAPACK - Subroutine Package for Problems of Control Theory. The User's Manual, ÚTIA ČSAV, Prague 1984. (1984)

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.