A solution of the continuous Lyapunov equation by means of power series

Jan Ježek

Kybernetika (1986)

  • Volume: 22, Issue: 3, page 209-217
  • ISSN: 0023-5954

How to cite

top

Ježek, Jan. "A solution of the continuous Lyapunov equation by means of power series." Kybernetika 22.3 (1986): 209-217. <http://eudml.org/doc/28631>.

@article{Ježek1986,
author = {Ježek, Jan},
journal = {Kybernetika},
keywords = {stationary Lyapunov equation; continuous Lyapunov equation; Taylor expansion},
language = {eng},
number = {3},
pages = {209-217},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A solution of the continuous Lyapunov equation by means of power series},
url = {http://eudml.org/doc/28631},
volume = {22},
year = {1986},
}

TY - JOUR
AU - Ježek, Jan
TI - A solution of the continuous Lyapunov equation by means of power series
JO - Kybernetika
PY - 1986
PB - Institute of Information Theory and Automation AS CR
VL - 22
IS - 3
SP - 209
EP - 217
LA - eng
KW - stationary Lyapunov equation; continuous Lyapunov equation; Taylor expansion
UR - http://eudml.org/doc/28631
ER -

References

top
  1. F. R. Gantmacher, The Theory of Matrices, vol. 1. Chelsea, New York 1966. (1966) MR1657129
  2. P. Lancaster, Theory of Matrices, Academic Press, New York 1969. (1969) Zbl0186.05301MR0245579
  3. W. Givens, Elementary divisors and some properties of the Lyapunov mapping X A X + X A * , Argonne National Laboratory, Argonne, Illinois 1961. (1961) 
  4. P. Hagander, Numerical solution of A T S + S A + Q = 0 , Lund Institute of Technology, Division of Automatic Control, Lund, Sweden 1969. (1969) MR0312703
  5. V. Kučera, The matrix equation AX + XB = C, SIAM J. Appl. Math. 26 (1974), 1, 15-25. (1974) MR0340280
  6. M. C. Pease, Methods of Matrix Algebra, Academic Press, New York 1965. (1965) Zbl0145.03701MR0207719
  7. P. Lancaster, Explicit solution of the matrix equations, SIAM Rev. 12 (1970), 544-566. (1970) MR0279115
  8. J. Štěcha A. Kozáčiková, J. Kozáčik, Algorithm for solution of equations P A + A T P = - Q and M T P M - P = - Q resulting in Lyapunov stability analysis of linear systems, Kybernetika 9 (1973), 1, 62-71. (1973) MR0327355
  9. S. Barnett, Remarks on solution of AX + XB = C, Electron. Lett. 7 (1971), p. 385. (1971) MR0319360
  10. C. S. Lu, Solution of the matrix equation AX + XB = C, Electron. Lett. 7 (1971), 185-186. (1971) MR0319359
  11. C. S. Berger, A numerical solution of the matrix equation P = Φ P Φ T + S , IEEE Trans. Automat. Control AC-16 (1971), 4, 381-382. (1971) 
  12. A. Jameson, Solution of the equation AX + XB = C by inversion of an M x M or N X N matrix, SIAM J. Appl. Math. 16 (1968), 1020-1023. (1968) MR0234974
  13. M. Záruba, The Stationary Solution of the Riccati Equation, (in Czech). ÚTIA ČSAV Research Report 371, Prague 1973. (1973) 
  14. E. C. Ma, A finite series solution of the matrix equation AX - XB = C, SIAM J. Appl. Math. 74 (1966), 490-495. (1966) Zbl0144.27003MR0201456
  15. E. J. Davison, F. T. Man, The numerical solution of A ' Q + Q A = - C , IEEE Trans. Automat. Control AC-13 (1968), 4, 448-449. (1968) MR0235707
  16. A. Trampus, A canonical basis for the matrix transormation X A X + X B , J. Math. Anal. Appl. 14 (1966), 242-252. (1966) MR0190157
  17. J. Ježek, UTIAPACK - Subroutine Package for Problems of Control Theory. The User's Manual, ÚTIA ČSAV, Prague 1984. (1984) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.