On complemented copies of c₀(ω₁) in C(Kⁿ) spaces

Leandro Candido; Piotr Koszmider

Studia Mathematica (2016)

  • Volume: 233, Issue: 3, page 209-226
  • ISSN: 0039-3223

Abstract

top
Given a compact Hausdorff space K we consider the Banach space of real continuous functions C(Kⁿ) or equivalently the n-fold injective tensor product ̂ ε n C ( K ) or the Banach space of vector valued continuous functions C(K,C(K,C(K...,C(K)...). We address the question of the existence of complemented copies of c₀(ω₁) in ̂ ε n C ( K ) under the hypothesis that C(K) contains such a copy. This is related to the results of E. Saab and P. Saab that X ̂ ε Y contains a complemented copy of c₀ if one of the infinite-dimensional Banach spaces X or Y contains a copy of c₀, and of E. M. Galego and J. Hagler that it follows from Martin’s Maximum that if C(K) has density ω₁ and contains a copy of c₀(ω₁), then C(K×K) contains a complemented copy of c₀(ω₁). Our main result is that under the assumption of ♣ for every n ∈ ℕ there is a compact Hausdorff space Kₙ of weight ω₁ such that C(K) is Lindelöf in the weak topology, C(Kₙ) contains a copy of c₀(ω₁), C(Kₙⁿ) does not contain a complemented copy of c₀(ω₁), while C ( K n + 1 ) does contain a complemented copy of c₀(ω₁). This shows that additional set-theoretic assumptions in Galego and Hagler’s nonseparable version of Cembrano and Freniche’s theorem are necessary, as well as clarifies in the negative direction the matter unsettled in a paper of Dow, Junnila and Pelant whether half-pcc Banach spaces must be weakly pcc.

How to cite

top

Leandro Candido, and Piotr Koszmider. "On complemented copies of c₀(ω₁) in C(Kⁿ) spaces." Studia Mathematica 233.3 (2016): 209-226. <http://eudml.org/doc/286383>.

@article{LeandroCandido2016,
abstract = {Given a compact Hausdorff space K we consider the Banach space of real continuous functions C(Kⁿ) or equivalently the n-fold injective tensor product $⊗̂^\{n\}_\{ε\}C(K)$ or the Banach space of vector valued continuous functions C(K,C(K,C(K...,C(K)...). We address the question of the existence of complemented copies of c₀(ω₁) in $⊗̂^\{n\}_\{ε\} C(K)$ under the hypothesis that C(K) contains such a copy. This is related to the results of E. Saab and P. Saab that $X ⊗̂_\{ε\} Y$ contains a complemented copy of c₀ if one of the infinite-dimensional Banach spaces X or Y contains a copy of c₀, and of E. M. Galego and J. Hagler that it follows from Martin’s Maximum that if C(K) has density ω₁ and contains a copy of c₀(ω₁), then C(K×K) contains a complemented copy of c₀(ω₁). Our main result is that under the assumption of ♣ for every n ∈ ℕ there is a compact Hausdorff space Kₙ of weight ω₁ such that C(K) is Lindelöf in the weak topology, C(Kₙ) contains a copy of c₀(ω₁), C(Kₙⁿ) does not contain a complemented copy of c₀(ω₁), while $C(Kₙ^\{n+1\})$ does contain a complemented copy of c₀(ω₁). This shows that additional set-theoretic assumptions in Galego and Hagler’s nonseparable version of Cembrano and Freniche’s theorem are necessary, as well as clarifies in the negative direction the matter unsettled in a paper of Dow, Junnila and Pelant whether half-pcc Banach spaces must be weakly pcc.},
author = {Leandro Candido, Piotr Koszmider},
journal = {Studia Mathematica},
keywords = {Banach spaces of continuous functions; injective tensor product; complemented subspaces; ostaszewski's martin's maximum; vector valued continuous functions; scattered compact spaces},
language = {eng},
number = {3},
pages = {209-226},
title = {On complemented copies of c₀(ω₁) in C(Kⁿ) spaces},
url = {http://eudml.org/doc/286383},
volume = {233},
year = {2016},
}

TY - JOUR
AU - Leandro Candido
AU - Piotr Koszmider
TI - On complemented copies of c₀(ω₁) in C(Kⁿ) spaces
JO - Studia Mathematica
PY - 2016
VL - 233
IS - 3
SP - 209
EP - 226
AB - Given a compact Hausdorff space K we consider the Banach space of real continuous functions C(Kⁿ) or equivalently the n-fold injective tensor product $⊗̂^{n}_{ε}C(K)$ or the Banach space of vector valued continuous functions C(K,C(K,C(K...,C(K)...). We address the question of the existence of complemented copies of c₀(ω₁) in $⊗̂^{n}_{ε} C(K)$ under the hypothesis that C(K) contains such a copy. This is related to the results of E. Saab and P. Saab that $X ⊗̂_{ε} Y$ contains a complemented copy of c₀ if one of the infinite-dimensional Banach spaces X or Y contains a copy of c₀, and of E. M. Galego and J. Hagler that it follows from Martin’s Maximum that if C(K) has density ω₁ and contains a copy of c₀(ω₁), then C(K×K) contains a complemented copy of c₀(ω₁). Our main result is that under the assumption of ♣ for every n ∈ ℕ there is a compact Hausdorff space Kₙ of weight ω₁ such that C(K) is Lindelöf in the weak topology, C(Kₙ) contains a copy of c₀(ω₁), C(Kₙⁿ) does not contain a complemented copy of c₀(ω₁), while $C(Kₙ^{n+1})$ does contain a complemented copy of c₀(ω₁). This shows that additional set-theoretic assumptions in Galego and Hagler’s nonseparable version of Cembrano and Freniche’s theorem are necessary, as well as clarifies in the negative direction the matter unsettled in a paper of Dow, Junnila and Pelant whether half-pcc Banach spaces must be weakly pcc.
LA - eng
KW - Banach spaces of continuous functions; injective tensor product; complemented subspaces; ostaszewski's martin's maximum; vector valued continuous functions; scattered compact spaces
UR - http://eudml.org/doc/286383
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.