The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On complemented copies of c₀(ω₁) in C(Kⁿ) spaces”

On the mutually non isomorphic l p ( l q )

Pilar Cembranos, Jose Mendoza (2016)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

In this note we survey the partial results needed to show the following general theorem: l p ( l q ) : 1 p , q + is a family of mutually non isomorphic Banach spaces. We also comment some related facts and open problems.

On the number of non-isomorphic subspaces of a Banach space

Valentin Ferenczi, Christian Rosendal (2005)

Studia Mathematica

Similarity:

We study the number of non-isomorphic subspaces of a given Banach space. Our main result is the following. Let be a Banach space with an unconditional basis ( e i ) i ; then either there exists a perfect set P of infinite subsets of ℕ such that for any two distinct A,B ∈ P, [ e i ] i A [ e i ] i B , or for a residual set of infinite subsets A of ℕ, [ e i ] i A is isomorphic to , and in that case, is isomorphic to its square, to its hyperplanes, uniformly isomorphic to [ e i ] i D for any D ⊂ ℕ, and isomorphic to a denumerable Schauder...

On monotonic functions from the unit interval into a Banach space with uncountable sets of points of discontinuity

Artur Michalak (2003)

Studia Mathematica

Similarity:

We say that a function f from [0,1] to a Banach space X is increasing with respect to E ⊂ X* if x* ∘ f is increasing for every x* ∈ E. We show that if f: [0,1] → X is an increasing function with respect to a norming subset E of X* with uncountably many points of discontinuity and Q is a countable dense subset of [0,1], then (1) l i n f ( [ 0 , 1 ] ) ¯ contains an order isomorphic copy of D(0,1), (2) l i n f ( Q ) ¯ contains an isomorphic copy of C([0,1]), (3) l i n f ( [ 0 , 1 ] ) ¯ / l i n f ( Q ) ¯ contains an isomorphic copy of c₀(Γ) for some uncountable...

Geometry of the Banach spaces C(βℕ × K,X) for compact metric spaces K

Dale E. Alspach, Elói Medina Galego (2011)

Studia Mathematica

Similarity:

A classical result of Cembranos and Freniche states that the C(K,X) space contains a complemented copy of c₀ whenever K is an infinite compact Hausdorff space and X is an infinite-dimensional Banach space. This paper takes this result as a starting point and begins a study of conditions under which the spaces C(α), α < ω₁, are quotients of or complemented in C(K,X). In contrast to the c₀ result, we prove that if C(βℕ ×[1,ω],X) contains a complemented copy of C ( ω ω ) then X contains a copy...

On Banach spaces C(K) isomorphic to c₀(Γ)

Witold Marciszewski (2003)

Studia Mathematica

Similarity:

We give a characterization of compact spaces K such that the Banach space C(K) is isomorphic to the space c₀(Γ) for some set Γ. As an application we show that there exists an Eberlein compact space K of weight ω ω and with the third derived set K ( 3 ) empty such that the space C(K) is not isomorphic to any c₀(Γ). For this compactum K, the spaces C(K) and c ( ω ω ) are examples of weakly compactly generated (WCG) Banach spaces which are Lipschitz isomorphic but not isomorphic.

L 2 -Summand Vectors and Complemented Hilbertizable Subspaces

Antonio Aizpuru, Francisco J. García-Pacheco (2007)

Bollettino dell'Unione Matematica Italiana

Similarity:

In this paper, we show a necessary and sufficient condition for a real Banach space to have an infinite dimensional subspace which is hilbertizable and complemented using techniques related to L 2 -summand vectors.

On the Banach-Mazur distance between continuous function spaces with scattered boundaries

Jakub Rondoš (2023)

Czechoslovak Mathematical Journal

Similarity:

We study the dependence of the Banach-Mazur distance between two subspaces of vector-valued continuous functions on the scattered structure of their boundaries. In the spirit of a result of Y. Gordon (1970), we show that the constant 2 appearing in the Amir-Cambern theorem may be replaced by 3 for some class of subspaces. We achieve this by showing that the Banach-Mazur distance of two function spaces is at least 3, if the height of the set of weak peak points of one of the spaces differs...

On Some Properties of Separately Increasing Functions from [0,1]ⁿ into a Banach Space

Artur Michalak (2014)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We say that a function f from [0,1] to a Banach space X is increasing with respect to E ⊂ X* if x* ∘ f is increasing for every x* ∈ E. A function f : [ 0 , 1 ] m X is separately increasing if it is increasing in each variable separately. We show that if X is a Banach space that does not contain any isomorphic copy of c₀ or such that X* is separable, then for every separately increasing function f : [ 0 , 1 ] m X with respect to any norming subset there exists a separately increasing function g : [ 0 , 1 ] m such that the sets of...

Sequentially Right Banach spaces of order p

Mahdi Dehghani, Mohammad B. Dehghani, Mohammad S. Moshtaghioun (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We introduce and study two new classes of Banach spaces, the so-called sequentially Right Banach spaces of order p , and those defined by the dual property, the sequentially Right * Banach spaces of order p for 1 p . These classes of Banach spaces are characterized by the notions of L p -limited sets in the corresponding dual space and R p * subsets of the involved Banach space, respectively. In particular, we investigate whether the injective tensor product of a Banach space X and a reflexive Banach...

Rosenthal operator spaces

M. Junge, N. J. Nielsen, T. Oikhberg (2008)

Studia Mathematica

Similarity:

In 1969 Lindenstrauss and Rosenthal showed that if a Banach space is isomorphic to a complemented subspace of an L p -space, then it is either an L p -space or isomorphic to a Hilbert space. This is the motivation of this paper where we study non-Hilbertian complemented operator subspaces of non-commutative L p -spaces and show that this class is much richer than in the commutative case. We investigate the local properties of some new classes of operator spaces for every 2 < p < ∞ which...

Spaces of operators and c₀

P. Lewis (2001)

Studia Mathematica

Similarity:

Bessaga and Pełczyński showed that if c₀ embeds in the dual X* of a Banach space X, then ℓ¹ embeds complementably in X, and embeds as a subspace of X*. In this note the Diestel-Faires theorem and techniques of Kalton are used to show that if X is an infinite-dimensional Banach space, Y is an arbitrary Banach space, and c₀ embeds in L(X,Y), then embeds in L(X,Y), and ℓ¹ embeds complementably in X γ Y * . Applications to embeddings of c₀ in various spaces of operators are given.

Structure of Rademacher subspaces in Cesàro type spaces

Sergey V. Astashkin, Lech Maligranda (2015)

Studia Mathematica

Similarity:

The structure of the closed linear span of the Rademacher functions in the Cesàro space C e s is investigated. It is shown that every infinite-dimensional subspace of either is isomorphic to l₂ and uncomplemented in C e s , or contains a subspace isomorphic to c₀ and complemented in . The situation is rather different in the p-convexification of C e s if 1 < p < ∞.

On Lindenstrauss-Pełczyński spaces

Jesús M. F. Castillo, Yolanda Moreno, Jesús Suárez (2006)

Studia Mathematica

Similarity:

We consider some stability aspects of the classical problem of extension of C(K)-valued operators. We introduce the class ℒ of Banach spaces of Lindenstrauss-Pełczyński type as those such that every operator from a subspace of c₀ into them can be extended to c₀. We show that all ℒ-spaces are of type but not conversely. Moreover, -spaces will be characterized as those spaces E such that E-valued operators from w*(l₁,c₀)-closed subspaces of l₁ extend to l₁. Regarding examples we will...

Structure of Cesàro function spaces: a survey

Sergey V. Astashkin, Lech Maligranda (2014)

Banach Center Publications

Similarity:

Geometric structure of Cesàro function spaces C e s p ( I ) , where I = [0,1] and [0,∞), is investigated. Among other matters we present a description of their dual spaces, characterize the sets of all q ∈ [1,∞] such that C e s p [ 0 , 1 ] contains isomorphic and complemented copies of l q -spaces, show that Cesàro function spaces fail the fixed point property, give a description of subspaces generated by Rademacher functions in spaces C e s p [ 0 , 1 ] .

Order-bounded operators from vector-valued function spaces to Banach spaces

Marian Nowak (2005)

Banach Center Publications

Similarity:

Let E be an ideal of L⁰ over a σ-finite measure space (Ω,Σ,μ). For a real Banach space ( X , | | · | | X ) let E(X) be a subspace of the space L⁰(X) of μ-equivalence classes of strongly Σ-measurable functions f: Ω → X and consisting of all those f ∈ L⁰(X) for which the scalar function | | f ( · ) | | X belongs to E. Let E(X)˜ stand for the order dual of E(X). For u ∈ E⁺ let D u ( = f E ( X ) : | | f ( · ) | | X u ) stand for the order interval in E(X). For a real Banach space ( Y , | | · | | Y ) a linear operator T: E(X) → Y is said to be order-bounded whenever for each u ∈...

Banach spaces widely complemented in each other

Elói Medina Galego (2013)

Colloquium Mathematicae

Similarity:

Suppose that X and Y are Banach spaces that embed complementably into each other. Are X and Y necessarily isomorphic? In this generality, the answer is no, as proved by W. T. Gowers in 1996. However, if X contains a complemented copy of its square X², then X is isomorphic to Y whenever there exists p ∈ ℕ such that X p can be decomposed into a direct sum of X p - 1 and Y. Motivated by this fact, we introduce the concept of (p,q,r) widely complemented subspaces in Banach spaces, where p,q and...

C*-algebras have a quantitative version of Pełczyński's property (V)

Hana Krulišová (2017)

Czechoslovak Mathematical Journal

Similarity:

A Banach space X has Pełczyński’s property (V) if for every Banach space Y every unconditionally converging operator T : X Y is weakly compact. H. Pfitzner proved that C * -algebras have Pełczyński’s property (V). In the preprint (Krulišová, (2015)) the author explores possible quantifications of the property (V) and shows that C ( K ) spaces for a compact Hausdorff space K enjoy a quantitative version of the property (V). In this paper we generalize this result by quantifying Pfitzner’s theorem. Moreover,...

Linearization of isometric embedding on Banach spaces

Yu Zhou, Zihou Zhang, Chunyan Liu (2015)

Studia Mathematica

Similarity:

Let X,Y be Banach spaces, f: X → Y be an isometry with f(0) = 0, and T : s p a n ¯ ( f ( X ) ) X be the Figiel operator with T f = I d X and ||T|| = 1. We present a sufficient and necessary condition for the Figiel operator T to admit a linear isometric right inverse. We also prove that such a right inverse exists when s p a n ¯ ( f ( X ) ) is weakly nearly strictly convex.

Geometry of Banach spaces and biorthogonal systems

S. Dilworth, Maria Girardi, W. Johnson (2000)

Studia Mathematica

Similarity:

A separable Banach space X contains 1 isomorphically if and only if X has a bounded fundamental total w c 0 * -stable biorthogonal system. The dual of a separable Banach space X fails the Schur property if and only if X has a bounded fundamental total w c 0 * -biorthogonal system.

Application of ( L ) sets to some classes of operators

Kamal El Fahri, Nabil Machrafi, Jawad H&amp;#039;michane, Aziz Elbour (2016)

Mathematica Bohemica

Similarity:

The paper contains some applications of the notion of Ł sets to several classes of operators on Banach lattices. In particular, we introduce and study the class of order ( L ) -Dunford-Pettis operators, that is, operators from a Banach space into a Banach lattice whose adjoint maps order bounded subsets to an ( L ) sets. As a sequence characterization of such operators, we see that an operator T : X E from a Banach space into a Banach lattice is order Ł -Dunford-Pettis, if and only if | T ( x n ) | 0 for σ ( E , E ' ) for every...

Second derivatives of norms and contractive complementation in vector-valued spaces

Bas Lemmens, Beata Randrianantoanina, Onno van Gaans (2007)

Studia Mathematica

Similarity:

We consider 1-complemented subspaces (ranges of contractive projections) of vector-valued spaces p ( X ) , where X is a Banach space with a 1-unconditional basis and p ∈ (1,2) ∪ (2,∞). If the norm of X is twice continuously differentiable and satisfies certain conditions connecting the norm and the notion of disjointness with respect to the basis, then we prove that every 1-complemented subspace of p ( X ) admits a basis of mutually disjoint elements. Moreover, we show that every contractive projection...

Pisier's inequality revisited

Tuomas Hytönen, Assaf Naor (2013)

Studia Mathematica

Similarity:

Given a Banach space X, for n ∈ ℕ and p ∈ (1,∞) we investigate the smallest constant ∈ (0,∞) for which every n-tuple of functions f₁,...,fₙ: -1,1ⁿ → X satisfies - 1 , 1 | | j = 1 n j f j ( ε ) | | p d μ ( ε ) p - 1 , 1 - 1 , 1 | | j = 1 n δ j Δ f j ( ε ) | | p d μ ( ε ) d μ ( δ ) , where μ is the uniform probability measure on the discrete hypercube -1,1ⁿ, and j j = 1 n and Δ = j = 1 n j are the hypercube partial derivatives and the hypercube Laplacian, respectively. Denoting this constant by p ( X ) , we show that p ( X ) k = 1 n 1 / k for every Banach space (X,||·||). This extends the classical Pisier inequality, which corresponds to the special...

On the Aronszajn property for integral equations in Banach space

Stanisław Szufla (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

For the integral equation (1) below we prove the existence on an interval J = [ 0 , a ] of a solution x with values in a Banach space E , belonging to the class L p ( J , E ) , p > 1 . Further, the set of solutions is shown to be a compact one in the sense of Aronszajn.

Corrigendum to the paper “The universal Banach space with a K -suppression unconditional basis”

Taras O. Banakh, Joanna Garbulińska-Wegrzyn (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We observe that the notion of an almost 𝔉ℑ K -universal based Banach space, introduced in our earlier paper [1]: Banakh T., Garbulińska-Wegrzyn J., The universal Banach space with a K -suppression unconditional basis, Comment. Math. Univ. Carolin. 59 (2018), no. 2, 195–206, is vacuous for K = 1 . Taking into account this discovery, we reformulate Theorem 5.2 from [1] in order to guarantee that the main results of [1] remain valid.

Reflexivity and approximate fixed points

Eva Matoušková, Simeon Reich (2003)

Studia Mathematica

Similarity:

A Banach space X is reflexive if and only if every bounded sequence xₙ in X contains a norm attaining subsequence. This means that it contains a subsequence x n k for which s u p f S X * l i m s u p k f ( x n k ) is attained at some f in the dual unit sphere S X * . A Banach space X is not reflexive if and only if it contains a normalized sequence xₙ with the property that for every f S X * , there exists g S X * such that l i m s u p n f ( x ) < l i m i n f n g ( x ) . Combining this with a result of Shafrir, we conclude that every infinite-dimensional Banach space contains an unbounded...

Decompositions for real Banach spaces with small spaces of operators

Manuel González, José M. Herrera (2007)

Studia Mathematica

Similarity:

We consider real Banach spaces X for which the quotient algebra (X)/ℐn(X) is finite-dimensional, where ℐn(X) stands for the ideal of inessential operators on X. We show that these spaces admit a decomposition as a finite direct sum of indecomposable subspaces X i for which ( X i ) / n ( X i ) is isomorphic as a real algebra to either the real numbers ℝ, the complex numbers ℂ, or the quaternion numbers ℍ. Moreover, the set of subspaces X i can be divided into subsets in such a way that if X i and X j are in different...

On the Aronszajn property for integral equations in Banach space

Stanisław Szufla (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

For the integral equation (1) below we prove the existence on an interval J = [ 0 , a ] of a solution x with values in a Banach space E , belonging to the class L p ( J , E ) , p > 1 . Further, the set of solutions is shown to be a compact one in the sense of Aronszajn.

Limited p -converging operators and relation with some geometric properties of Banach spaces

Mohammad B. Dehghani, Seyed M. Moshtaghioun (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

By using the concepts of limited p -converging operators between two Banach spaces X and Y , L p -sets and L p -limited sets in Banach spaces, we obtain some characterizations of these concepts relative to some well-known geometric properties of Banach spaces, such as * -Dunford–Pettis property of order p and Pelczyński’s property of order p , 1 p < .

An Isomorphic Classification of C ( 2 × [ 0 , α ] ) Spaces

Elói Medina Galego (2009)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We present an extension of the classical isomorphic classification of the Banach spaces C([0,α]) of all real continuous functions defined on the nondenumerable intervals of ordinals [0,α]. As an application, we establish the isomorphic classification of the Banach spaces C ( 2 × [ 0 , α ] ) of all real continuous functions defined on the compact spaces 2 × [ 0 , α ] , the topological product of the Cantor cubes 2 with smaller than the first sequential cardinal, and intervals of ordinal numbers [0,α]. Consequently,...