On the relative fundamental solutions for a second order differential operator on the Heisenberg group

T. Godoy; L. Saal

Studia Mathematica (2001)

  • Volume: 145, Issue: 2, page 143-164
  • ISSN: 0039-3223

Abstract

top
Let Hₙ be the (2n+1)-dimensional Heisenberg group, let p,q ≥ 1 be integers satisfying p+q=n, and let L = j = 1 p ( X ² j + Y ² j ) - j = p + 1 n ( X ² j + Y ² j ) , where X₁,Y₁,...,Xₙ,Yₙ,T denotes the standard basis of the Lie algebra of Hₙ. We compute explicitly a relative fundamental solution for L.

How to cite

top

T. Godoy, and L. Saal. "On the relative fundamental solutions for a second order differential operator on the Heisenberg group." Studia Mathematica 145.2 (2001): 143-164. <http://eudml.org/doc/286506>.

@article{T2001,
abstract = {Let Hₙ be the (2n+1)-dimensional Heisenberg group, let p,q ≥ 1 be integers satisfying p+q=n, and let $L = ∑_\{j=1\}^\{p\} (X²_\{j\} + Y²_\{j\}) -∑_\{j=p+1\}^\{n\} (X²_\{j\} + Y²_\{j\})$, where X₁,Y₁,...,Xₙ,Yₙ,T denotes the standard basis of the Lie algebra of Hₙ. We compute explicitly a relative fundamental solution for L.},
author = {T. Godoy, L. Saal},
journal = {Studia Mathematica},
keywords = {fundamental solutions; second order differential operator; Lie algebra; Heisenberg group; Hermite temporal distributions; spectral decomposition},
language = {eng},
number = {2},
pages = {143-164},
title = {On the relative fundamental solutions for a second order differential operator on the Heisenberg group},
url = {http://eudml.org/doc/286506},
volume = {145},
year = {2001},
}

TY - JOUR
AU - T. Godoy
AU - L. Saal
TI - On the relative fundamental solutions for a second order differential operator on the Heisenberg group
JO - Studia Mathematica
PY - 2001
VL - 145
IS - 2
SP - 143
EP - 164
AB - Let Hₙ be the (2n+1)-dimensional Heisenberg group, let p,q ≥ 1 be integers satisfying p+q=n, and let $L = ∑_{j=1}^{p} (X²_{j} + Y²_{j}) -∑_{j=p+1}^{n} (X²_{j} + Y²_{j})$, where X₁,Y₁,...,Xₙ,Yₙ,T denotes the standard basis of the Lie algebra of Hₙ. We compute explicitly a relative fundamental solution for L.
LA - eng
KW - fundamental solutions; second order differential operator; Lie algebra; Heisenberg group; Hermite temporal distributions; spectral decomposition
UR - http://eudml.org/doc/286506
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.