Page 1 Next

Displaying 1 – 20 of 61

Showing per page

A numerically efficient approach to the modelling of double-Qdot channels

A. Shamloo, A.P. Sowa (2013)

Nanoscale Systems: Mathematical Modeling, Theory and Applications

We consider the electronic properties of a system consisting of two quantum dots in physical proximity, which we will refer to as the double-Qdot. Double-Qdots are attractive in light of their potential application to spin-based quantum computing and other electronic applications, e.g. as specialized sensors. Our main goal is to derive the essential properties of the double-Qdot from a model that is rigorous yet numerically tractable, and largely circumvents the complexities of an ab initio simulation....

Critical case of nonlinear Schrödinger equations with inverse-square potentials on bounded domains

Toshiyuki Suzuki (2014)

Mathematica Bohemica

Nonlinear Schrödinger equations (NLS) a with strongly singular potential a | x | - 2 on a bounded domain Ω are considered. If Ω = N and a > - ( N - 2 ) 2 / 4 , then the global existence of weak solutions is confirmed by applying the energy methods established by N. Okazawa, T. Suzuki, T. Yokota (2012). Here a = - ( N - 2 ) 2 / 4 is excluded because D ( P a ( N ) 1 / 2 ) is not equal to H 1 ( N ) , where P a ( N ) : = - Δ - ( N - 2 ) 2 / ( 4 | x | 2 ) is nonnegative and selfadjoint in L 2 ( N ) . On the other hand, if Ω is a smooth and bounded domain with 0 Ω , the Hardy-Poincaré inequality is proved in J. L. Vazquez, E. Zuazua (2000)....

Elementary linear algebra for advanced spectral problems

Johannes Sjöstrand, Maciej Zworski (2007)

Annales de l’institut Fourier

We describe a simple linear algebra idea which has been used in different branches of mathematics such as bifurcation theory, partial differential equations and numerical analysis. Under the name of the Schur complement method it is one of the standard tools of applied linear algebra. In PDE and spectral analysis it is sometimes called the Grushin problem method, and here we concentrate on its uses in the study of infinite dimensional problems, coming from partial differential operators of mathematical...

Embedded eigenvalues and resonances of Schrödinger operators with two channels

Xue Ping Wang (2007)

Annales de la faculté des sciences de Toulouse Mathématiques

In this article, we give a necessary and sufficient condition in the perturbation regime on the existence of eigenvalues embedded between two thresholds. For an eigenvalue of the unperturbed operator embedded at a threshold, we prove that it can produce both discrete eigenvalues and resonances. The locations of the eigenvalues and resonances are given.

Fermi Golden Rule, Feshbach Method and embedded point spectrum

Jan Dereziński (1998/1999)

Séminaire Équations aux dérivées partielles

A method to study the embedded point spectrum of self-adjoint operators is described. The method combines the Mourre theory and the Limiting Absorption Principle with the Feshbach Projection Method. A more complete description of this method is contained in a joint paper with V. Jak s ˇ ić, where it is applied to a study of embedded point spectrum of Pauli-Fierz Hamiltonians.

Currently displaying 1 – 20 of 61

Page 1 Next