Mod 2 normal numbers and skew products
Geon Ho Choe; Toshihiro Hamachi; Hitoshi Nakada
Studia Mathematica (2004)
- Volume: 165, Issue: 1, page 53-60
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topGeon Ho Choe, Toshihiro Hamachi, and Hitoshi Nakada. "Mod 2 normal numbers and skew products." Studia Mathematica 165.1 (2004): 53-60. <http://eudml.org/doc/286569>.
@article{GeonHoChoe2004,
	abstract = {Let E be an interval in the unit interval [0,1). For each x ∈ [0,1) define dₙ(x) ∈ 0,1 by $dₙ(x) := ∑_\{i=1\}^\{n\} 1_\{E\} (\{2^\{i-1\}x\}) (mod 2)$, where t is the fractional part of t. Then x is called a normal number mod 2 with respect to E if $N^\{-1\} ∑_\{n=1\}^\{N\} dₙ(x)$ converges to 1/2. It is shown that for any interval E ≠(1/6, 5/6) a.e. x is a normal number mod 2 with respect to E. For E = (1/6, 5/6) it is proved that $N^\{-1\} ∑_\{n=1\}^\{N\} dₙ(x)$ converges a.e. and the limit equals 1/3 or 2/3 depending on x.},
	author = {Geon Ho Choe, Toshihiro Hamachi, Hitoshi Nakada},
	journal = {Studia Mathematica},
	keywords = {ergodicity; mod 2 normal number; skew product; coboundary},
	language = {eng},
	number = {1},
	pages = {53-60},
	title = {Mod 2 normal numbers and skew products},
	url = {http://eudml.org/doc/286569},
	volume = {165},
	year = {2004},
}
TY  - JOUR
AU  - Geon Ho Choe
AU  - Toshihiro Hamachi
AU  - Hitoshi Nakada
TI  - Mod 2 normal numbers and skew products
JO  - Studia Mathematica
PY  - 2004
VL  - 165
IS  - 1
SP  - 53
EP  - 60
AB  - Let E be an interval in the unit interval [0,1). For each x ∈ [0,1) define dₙ(x) ∈ 0,1 by $dₙ(x) := ∑_{i=1}^{n} 1_{E} ({2^{i-1}x}) (mod 2)$, where t is the fractional part of t. Then x is called a normal number mod 2 with respect to E if $N^{-1} ∑_{n=1}^{N} dₙ(x)$ converges to 1/2. It is shown that for any interval E ≠(1/6, 5/6) a.e. x is a normal number mod 2 with respect to E. For E = (1/6, 5/6) it is proved that $N^{-1} ∑_{n=1}^{N} dₙ(x)$ converges a.e. and the limit equals 1/3 or 2/3 depending on x.
LA  - eng
KW  - ergodicity; mod 2 normal number; skew product; coboundary
UR  - http://eudml.org/doc/286569
ER  - 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 