Diophantine Approximations of Infinite Series and Products

Ondřej Kolouch; Lukáš Novotný

Communications in Mathematics (2016)

  • Volume: 24, Issue: 1, page 71-82
  • ISSN: 1804-1388

Abstract

top
This survey paper presents some old and new results in Diophantine approximations. Some of these results improve Erdos' results on~irrationality. The results in irrationality, transcendence and linear independence of infinite series and infinite products are put together with idea of irrational sequences and expressible sets.

How to cite

top

Kolouch, Ondřej, and Novotný, Lukáš. "Diophantine Approximations of Infinite Series and Products." Communications in Mathematics 24.1 (2016): 71-82. <http://eudml.org/doc/286693>.

@article{Kolouch2016,
abstract = {This survey paper presents some old and new results in Diophantine approximations. Some of these results improve Erdos' results on~irrationality. The results in irrationality, transcendence and linear independence of infinite series and infinite products are put together with idea of irrational sequences and expressible sets.},
author = {Kolouch, Ondřej, Novotný, Lukáš},
journal = {Communications in Mathematics},
keywords = {Infinite products; irrationality; linear independence; expressible set},
language = {eng},
number = {1},
pages = {71-82},
publisher = {University of Ostrava},
title = {Diophantine Approximations of Infinite Series and Products},
url = {http://eudml.org/doc/286693},
volume = {24},
year = {2016},
}

TY - JOUR
AU - Kolouch, Ondřej
AU - Novotný, Lukáš
TI - Diophantine Approximations of Infinite Series and Products
JO - Communications in Mathematics
PY - 2016
PB - University of Ostrava
VL - 24
IS - 1
SP - 71
EP - 82
AB - This survey paper presents some old and new results in Diophantine approximations. Some of these results improve Erdos' results on~irrationality. The results in irrationality, transcendence and linear independence of infinite series and infinite products are put together with idea of irrational sequences and expressible sets.
LA - eng
KW - Infinite products; irrationality; linear independence; expressible set
UR - http://eudml.org/doc/286693
ER -

References

top
  1. Badea, C., The irrationality of certain infinite products, Studia Univ. Babeş-Bolyai Math., 31, 3, 1986, 3-8, (1986) Zbl0625.10027MR0911859
  2. Badea, C., 10.1017/S0017089500006868, Glasgow Mathematical Journal, 29, 2, 1987, 221-228, (1987) Zbl0629.10027MR0901668DOI10.1017/S0017089500006868
  3. Duverney, D., Sur les séries de nombres rationnels à convergence rapide, Comptes Rendus de l'Académie des Sciences, Series I, Mathematics, 328, 7, 1999, 553-556, (1999) Zbl0940.11027MR1680014
  4. Erdős, P., Problem 4321, The American Mathematical Monthly, 64, 7, 1950, (1950) 
  5. Erdős, P., Some Problems and Results on the Irrationality of the Sum of Infinite Series, Journal of Mathematical Sciences, 10, 1975, 1-7, (1975) Zbl0372.10023MR0539489
  6. Erdős, P., Erdős problem no. 6, 1995 Prague Midsummer Combinatorial Workshop, KAM Series (95-309) (ed. M. Klazar) (KAM MPP UK, Prague, 1995), 1995, (1995) 
  7. Erdős, P., Straus, E. G., On the irrationality of certain Ahmes series, Journal of Indian Mathematical Society, 27, 1964, 129-133, (1964) MR0175848
  8. Hančl, J., 10.4064/aa-59-2-97-104, Acta Arithmetica, LIX, 2, 1991, 97-104, (1991) Zbl0701.11005MR1133951DOI10.4064/aa-59-2-97-104
  9. Hančl, J., 10.1006/jnth.1993.1010, Journal of Number Theory, 43, 1, 1993, 88-92, (1993) Zbl0768.11021MR1200812DOI10.1006/jnth.1993.1010
  10. Hančl, J., Filip, F., Irrationality Measure of Sequences, Hiroshima Math. J., 35, 2, 2005, 183-195, (2005) Zbl1087.11049MR2176050
  11. Hančl, J., Kolouch, O., 10.1017/S0004972711002309, Bull. Aust. Math. Soc., 84, 3, 2011, 414-424, (2011) Zbl1242.11050MR2851961DOI10.1017/S0004972711002309
  12. Hančl, J., Kolouch, O., 10.5486/PMD.2013.5676, Publ. Math. Debrecen, 83, 4, 2013, 667-681, (2013) Zbl1299.11050MR3150834DOI10.5486/PMD.2013.5676
  13. Hančl, J., Kolouch, O., Novotný, L., A Criterion for linear independence of infinite products, An. St. Univ. Ovidius Constanta, 23, 2, 2015, 107-120, (2015) Zbl1349.11105MR3348703
  14. Hančl, J., Kolouch, O., Pulcerová, S., Štěpnička, J., 10.1007/s10587-012-0053-2, Czechoslovak Math. J., 62, 137, 2012, 613-623, (2012) Zbl1265.11078MR2984622DOI10.1007/s10587-012-0053-2
  15. Hančl, J., Korčeková, K., Novotný, L., Productly linearly independent sequences, Stud. Sci. Math. Hung., 52, 2015, 350-370, (2015) Zbl1363.11073MR3402910
  16. Hančl, J., Nair, R., Novotný, L., 10.1007/s10998-014-0058-8, Period. Math. Hung., 69, 2, 2014, 199-206, (2014) Zbl1340.11067MR3278957DOI10.1007/s10998-014-0058-8
  17. Hančl, J., Nair, R., Novotný, L., Šustek, J., 10.4064/aa155-1-8, Acta Arithmetica, 155, 1, 2012, 85-90, (2012) Zbl1272.11094MR2982430DOI10.4064/aa155-1-8
  18. Hančl, J., Nair, R., Šustek, J., 10.1016/S0019-3577(06)81034-7, Indag. Mathem., 17, 4, 2006, 567-581, (2006) Zbl1131.11048MR2320114DOI10.1016/S0019-3577(06)81034-7
  19. Hančl, J., Schinzel, A., Šustek, J., On Expressible Sets of Geometric Sequences, Funct. Approx. Comment. Math., 38, 2008, 341-357, (2008) Zbl1215.11077MR2490089
  20. Kurosawa, T., Tachiya, Y., Tanaka, T., Algebraic independence of the values of certain infinite products and their derivatives related to Fibonacci and Lucas numbers (Analytic Number Theory: Number Theory through Approximation and Asymptotics), Proceedings of Institute for Mathematical Sciences, Kyoto University, 1874, 2014, 81-93, Research Institute for Mathematical Sciences, (2014) MR3178476
  21. Luca, F., Tachiya, Y., 10.14492/hokmj/1392906090, Hokkaido Math. J., 43, 2014, 1-20, (2014) Zbl1291.11103MR3178476DOI10.14492/hokmj/1392906090
  22. Nyblom, M. A., On the construction of a family of transcendental valued infinite products, Fibonacci Quart., 42, 4, 2004, 353-358, (2004) Zbl1062.11048MR2110089
  23. Sándor, J., Some classes of irrational numbers, Studia Universitatis Babeş-Bolyai Mathematica, 29, 1984, 3-12, (1984) Zbl0544.10033MR0782282
  24. Väänänen, K., 10.7146/math.scand.a-12465, Math. Scand., 73, 2, 1993, 197-208, (1993) Zbl0818.11028MR1269258DOI10.7146/math.scand.a-12465

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.