Diophantine Approximations of Infinite Series and Products
Communications in Mathematics (2016)
- Volume: 24, Issue: 1, page 71-82
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topKolouch, Ondřej, and Novotný, Lukáš. "Diophantine Approximations of Infinite Series and Products." Communications in Mathematics 24.1 (2016): 71-82. <http://eudml.org/doc/286693>.
@article{Kolouch2016,
abstract = {This survey paper presents some old and new results in Diophantine approximations. Some of these results improve Erdos' results on~irrationality. The results in irrationality, transcendence and linear independence of infinite series and infinite products are put together with idea of irrational sequences and expressible sets.},
author = {Kolouch, Ondřej, Novotný, Lukáš},
journal = {Communications in Mathematics},
keywords = {Infinite products; irrationality; linear independence; expressible set},
language = {eng},
number = {1},
pages = {71-82},
publisher = {University of Ostrava},
title = {Diophantine Approximations of Infinite Series and Products},
url = {http://eudml.org/doc/286693},
volume = {24},
year = {2016},
}
TY - JOUR
AU - Kolouch, Ondřej
AU - Novotný, Lukáš
TI - Diophantine Approximations of Infinite Series and Products
JO - Communications in Mathematics
PY - 2016
PB - University of Ostrava
VL - 24
IS - 1
SP - 71
EP - 82
AB - This survey paper presents some old and new results in Diophantine approximations. Some of these results improve Erdos' results on~irrationality. The results in irrationality, transcendence and linear independence of infinite series and infinite products are put together with idea of irrational sequences and expressible sets.
LA - eng
KW - Infinite products; irrationality; linear independence; expressible set
UR - http://eudml.org/doc/286693
ER -
References
top- Badea, C., The irrationality of certain infinite products, Studia Univ. Babeş-Bolyai Math., 31, 3, 1986, 3-8, (1986) Zbl0625.10027MR0911859
- Badea, C., 10.1017/S0017089500006868, Glasgow Mathematical Journal, 29, 2, 1987, 221-228, (1987) Zbl0629.10027MR0901668DOI10.1017/S0017089500006868
- Duverney, D., Sur les séries de nombres rationnels à convergence rapide, Comptes Rendus de l'Académie des Sciences, Series I, Mathematics, 328, 7, 1999, 553-556, (1999) Zbl0940.11027MR1680014
- Erdős, P., Problem 4321, The American Mathematical Monthly, 64, 7, 1950, (1950)
- Erdős, P., Some Problems and Results on the Irrationality of the Sum of Infinite Series, Journal of Mathematical Sciences, 10, 1975, 1-7, (1975) Zbl0372.10023MR0539489
- Erdős, P., Erdős problem no. 6, 1995 Prague Midsummer Combinatorial Workshop, KAM Series (95-309) (ed. M. Klazar) (KAM MPP UK, Prague, 1995), 1995, (1995)
- Erdős, P., Straus, E. G., On the irrationality of certain Ahmes series, Journal of Indian Mathematical Society, 27, 1964, 129-133, (1964) MR0175848
- Hančl, J., 10.4064/aa-59-2-97-104, Acta Arithmetica, LIX, 2, 1991, 97-104, (1991) Zbl0701.11005MR1133951DOI10.4064/aa-59-2-97-104
- Hančl, J., 10.1006/jnth.1993.1010, Journal of Number Theory, 43, 1, 1993, 88-92, (1993) Zbl0768.11021MR1200812DOI10.1006/jnth.1993.1010
- Hančl, J., Filip, F., Irrationality Measure of Sequences, Hiroshima Math. J., 35, 2, 2005, 183-195, (2005) Zbl1087.11049MR2176050
- Hančl, J., Kolouch, O., 10.1017/S0004972711002309, Bull. Aust. Math. Soc., 84, 3, 2011, 414-424, (2011) Zbl1242.11050MR2851961DOI10.1017/S0004972711002309
- Hančl, J., Kolouch, O., 10.5486/PMD.2013.5676, Publ. Math. Debrecen, 83, 4, 2013, 667-681, (2013) Zbl1299.11050MR3150834DOI10.5486/PMD.2013.5676
- Hančl, J., Kolouch, O., Novotný, L., A Criterion for linear independence of infinite products, An. St. Univ. Ovidius Constanta, 23, 2, 2015, 107-120, (2015) Zbl1349.11105MR3348703
- Hančl, J., Kolouch, O., Pulcerová, S., Štěpnička, J., 10.1007/s10587-012-0053-2, Czechoslovak Math. J., 62, 137, 2012, 613-623, (2012) Zbl1265.11078MR2984622DOI10.1007/s10587-012-0053-2
- Hančl, J., Korčeková, K., Novotný, L., Productly linearly independent sequences, Stud. Sci. Math. Hung., 52, 2015, 350-370, (2015) Zbl1363.11073MR3402910
- Hančl, J., Nair, R., Novotný, L., 10.1007/s10998-014-0058-8, Period. Math. Hung., 69, 2, 2014, 199-206, (2014) Zbl1340.11067MR3278957DOI10.1007/s10998-014-0058-8
- Hančl, J., Nair, R., Novotný, L., Šustek, J., 10.4064/aa155-1-8, Acta Arithmetica, 155, 1, 2012, 85-90, (2012) Zbl1272.11094MR2982430DOI10.4064/aa155-1-8
- Hančl, J., Nair, R., Šustek, J., 10.1016/S0019-3577(06)81034-7, Indag. Mathem., 17, 4, 2006, 567-581, (2006) Zbl1131.11048MR2320114DOI10.1016/S0019-3577(06)81034-7
- Hančl, J., Schinzel, A., Šustek, J., On Expressible Sets of Geometric Sequences, Funct. Approx. Comment. Math., 38, 2008, 341-357, (2008) Zbl1215.11077MR2490089
- Kurosawa, T., Tachiya, Y., Tanaka, T., Algebraic independence of the values of certain infinite products and their derivatives related to Fibonacci and Lucas numbers (Analytic Number Theory: Number Theory through Approximation and Asymptotics), Proceedings of Institute for Mathematical Sciences, Kyoto University, 1874, 2014, 81-93, Research Institute for Mathematical Sciences, (2014) MR3178476
- Luca, F., Tachiya, Y., 10.14492/hokmj/1392906090, Hokkaido Math. J., 43, 2014, 1-20, (2014) Zbl1291.11103MR3178476DOI10.14492/hokmj/1392906090
- Nyblom, M. A., On the construction of a family of transcendental valued infinite products, Fibonacci Quart., 42, 4, 2004, 353-358, (2004) Zbl1062.11048MR2110089
- Sándor, J., Some classes of irrational numbers, Studia Universitatis Babeş-Bolyai Mathematica, 29, 1984, 3-12, (1984) Zbl0544.10033MR0782282
- Väänänen, K., 10.7146/math.scand.a-12465, Math. Scand., 73, 2, 1993, 197-208, (1993) Zbl0818.11028MR1269258DOI10.7146/math.scand.a-12465
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.