Nonlinear Implicit Hadamard’s Fractional Differential Equationswith Delay in Banach Space
Mouffak Benchohra; Soufyane Bouriah; Jamal E. Lazreg; Juan J. Nieto
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2016)
- Volume: 55, Issue: 1, page 15-26
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topBenchohra, Mouffak, et al. "Nonlinear Implicit Hadamard’s Fractional Differential Equationswith Delay in Banach Space." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 55.1 (2016): 15-26. <http://eudml.org/doc/286701>.
@article{Benchohra2016,
abstract = {In this paper, we establish sufficient conditions for the existence of solutions for nonlinear Hadamard-type implicit fractional differential equations with finite delay. The proof of the main results is based on the measure of noncompactness and the Darbo’s and Mönch’s fixed point theorems. An example is included to show the applicability of our results.},
author = {Benchohra, Mouffak, Bouriah, Soufyane, Lazreg, Jamal E., Nieto, Juan J.},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Hadamard’s fractional derivative; implicit fractional differential equations in Banach space; fractional integral; existence; Gronwall’s lemma for singular kernels; Measure of noncompactness; fixed point},
language = {eng},
number = {1},
pages = {15-26},
publisher = {Palacký University Olomouc},
title = {Nonlinear Implicit Hadamard’s Fractional Differential Equationswith Delay in Banach Space},
url = {http://eudml.org/doc/286701},
volume = {55},
year = {2016},
}
TY - JOUR
AU - Benchohra, Mouffak
AU - Bouriah, Soufyane
AU - Lazreg, Jamal E.
AU - Nieto, Juan J.
TI - Nonlinear Implicit Hadamard’s Fractional Differential Equationswith Delay in Banach Space
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2016
PB - Palacký University Olomouc
VL - 55
IS - 1
SP - 15
EP - 26
AB - In this paper, we establish sufficient conditions for the existence of solutions for nonlinear Hadamard-type implicit fractional differential equations with finite delay. The proof of the main results is based on the measure of noncompactness and the Darbo’s and Mönch’s fixed point theorems. An example is included to show the applicability of our results.
LA - eng
KW - Hadamard’s fractional derivative; implicit fractional differential equations in Banach space; fractional integral; existence; Gronwall’s lemma for singular kernels; Measure of noncompactness; fixed point
UR - http://eudml.org/doc/286701
ER -
References
top- Abbas, S., Benchohra, M., N’Guérékata, G. M., Topics in Fractional Differential Equations, . Springer-Verlag, New York, 2012. (2012) Zbl1273.35001MR2962045
- Abbas, S., Benchohra, M., N’Guérékata, G. M., Advanced Fractional Differential and Integral Equations, . Nova Science Publishers, New York, 2015. (2015) Zbl1314.34002MR3309582
- Agarwal, R. P., Meehan, M., O’Regan, D., 10.1017/CBO9780511543005.008, . Cambridge University Press, Cambridge, 2001. (2001) Zbl0960.54027MR1825411DOI10.1017/CBO9780511543005.008
- Ahmad, B., Ntouyas, S. K., 10.2478/s13540-014-0173-5, . Fract. Calc. Appl. Anal. 17 (2014), 348–360. (2014) Zbl1312.34005MR3181059DOI10.2478/s13540-014-0173-5
- Ahmad, B., Ntouyas, S. K., Initial value problems of fractional order Hadamard-type functional differential equations, . Electron. J. Differential Equations 2015, 77 (2015), 1–9. (2015) Zbl1320.34109MR3337854
- Akhmerov, K. K., Kamenskii, M. I., Potapov, A. S., Rodkina, A. E., Sadovskii, B. N., Measures of Noncompactness and Condensing Operators, . Birkhäuser Verlag, Basel, Boston, Berlin, 1992. (1992) MR1153247
- Appell, J., 10.1016/0022-247X(81)90261-4, . J. Math. Anal. Appl. 83 (1981), 251–263. (1981) Zbl0495.45007MR0632341DOI10.1016/0022-247X(81)90261-4
- Baleanu, D., Güvenç, Z. B., Machado, J. A. T., New Trends in Nanotechnologiy and Fractional Calculus Applications, . Springer, New York, 2010. (2010) MR2605606
- Banaś, J., Goebel, K., Measures of Noncompactness in Banach Spaces, . Lecture Notes in Pure and Applied Mathematics 60, Marcel Dekker, New York, 1980. (1980) MR0591679
- Banaś, J., Olszowy, L., Measures of noncompactness related to monotonicity, . Comment. Math. 41 (2001), 13–23. (2001) Zbl0999.47041MR1876707
- Benchohra, M., Bouriah, S., Existence and stability results for nonlinear boundary value problem for implicit differential equations of fractional order, (2015)
- Benchohra, M., Bouriah, S., Henderson, J., Existence and stability results for nonlinear implicit neutral fractional differential equations with finite delay and impulses, . Comm. Appl. Nonlin. Anal. 22 (2015), 46–67. (2015) Zbl1358.34088MR3363687
- Butzer, P. L., Kilbas, A. A., Trujillo, J. J., 10.1016/S0022-247X(02)00049-5, . J. Math. Anal. Appl. 269 (2002), 387–400. (2002) Zbl1027.26004MR1907120DOI10.1016/S0022-247X(02)00049-5
- Granas, A., Dugundji, J., 10.1007/978-0-387-21593-8, . Springer-Verlag, New York, 2003. (2003) Zbl1025.47002MR1987179DOI10.1007/978-0-387-21593-8
- Guo, D. J., Lakshmikantham, V., Liu, X., Nonlinear Integral Equations in Abstract Spaces, . Kluwer Academic Publishers, Dordrecht, 1996. (1996) Zbl0866.45004MR1418859
- Hadamard, J., Essai sur l’étude des fonctions données par leur developpement de Taylor, . J. Math. Pure Appl. Ser. 8 (1892), 101–186. (1892)
- Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., Theory and Applications of Fractional Differential Equations, . North-Holland Mathematics Studies 204, Elsevier Science B.V., Amsterdam, 2006. (2006) Zbl1092.45003MR2218073
- Kilbas, A. A., Trujillo, J. J., 10.1080/1065246031000074443, . Integral Transform. Spec. Funct. 14 (2003), 413–427. (2003) Zbl1043.26004MR2005999DOI10.1080/1065246031000074443
- Lin, S., Generalised Gronwall inequalities and their applications to fractional differential equations, . J. Ineq. Appl. 2013, 549 (2013), 1–9. (2013) MR3212979
- Mönch, H., 10.1016/0362-546X(80)90010-3, . Nonlinear Anal. 4 (1980), 985–999. (1980) MR0586861DOI10.1016/0362-546X(80)90010-3
- Nieto, J. J., Ouahab, A., Venktesh, V., 10.3390/math3020398, . Mathematics 3, 2 (2015), 398–411. (2015) Zbl1322.34012DOI10.3390/math3020398
- Podlubny, I., Fractional Differential Equations, . Academic Press, San Diego, 1999. (1999) Zbl0924.34008MR1658022
- Sun, S., Zhao, Y., Han, Z., Li, Y., 10.1016/j.cnsns.2012.06.001, . Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 4961–4967. (2012) Zbl1352.34011MR2960290DOI10.1016/j.cnsns.2012.06.001
- Tarasov, V. E., Fractional Dynamics: Application of Fractional Calculus to Dynamics of particles, Fields and Media, . Springer & Higher Education Press, Heidelberg & Beijing, 2010. (2010) MR2796453
- Yosida, K., Functional Analysis, . 6th edn., Springer-Verlag, Berlin, 1980. (1980) Zbl0435.46002MR0617913
- Zhao, Y., Sun, S., Han, Z., Li, Q., 10.1016/j.camwa.2011.03.041, . Comput. Math. Appl. 62 (2011), 1312–1324. (2011) Zbl1228.45017MR2824718DOI10.1016/j.camwa.2011.03.041
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.