Nonlinear Implicit Hadamard’s Fractional Differential Equationswith Delay in Banach Space

Mouffak Benchohra; Soufyane Bouriah; Jamal E. Lazreg; Juan J. Nieto

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2016)

  • Volume: 55, Issue: 1, page 15-26
  • ISSN: 0231-9721

Abstract

top
In this paper, we establish sufficient conditions for the existence of solutions for nonlinear Hadamard-type implicit fractional differential equations with finite delay. The proof of the main results is based on the measure of noncompactness and the Darbo’s and Mönch’s fixed point theorems. An example is included to show the applicability of our results.

How to cite

top

Benchohra, Mouffak, et al. "Nonlinear Implicit Hadamard’s Fractional Differential Equationswith Delay in Banach Space." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 55.1 (2016): 15-26. <http://eudml.org/doc/286701>.

@article{Benchohra2016,
abstract = {In this paper, we establish sufficient conditions for the existence of solutions for nonlinear Hadamard-type implicit fractional differential equations with finite delay. The proof of the main results is based on the measure of noncompactness and the Darbo’s and Mönch’s fixed point theorems. An example is included to show the applicability of our results.},
author = {Benchohra, Mouffak, Bouriah, Soufyane, Lazreg, Jamal E., Nieto, Juan J.},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Hadamard’s fractional derivative; implicit fractional differential equations in Banach space; fractional integral; existence; Gronwall’s lemma for singular kernels; Measure of noncompactness; fixed point},
language = {eng},
number = {1},
pages = {15-26},
publisher = {Palacký University Olomouc},
title = {Nonlinear Implicit Hadamard’s Fractional Differential Equationswith Delay in Banach Space},
url = {http://eudml.org/doc/286701},
volume = {55},
year = {2016},
}

TY - JOUR
AU - Benchohra, Mouffak
AU - Bouriah, Soufyane
AU - Lazreg, Jamal E.
AU - Nieto, Juan J.
TI - Nonlinear Implicit Hadamard’s Fractional Differential Equationswith Delay in Banach Space
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2016
PB - Palacký University Olomouc
VL - 55
IS - 1
SP - 15
EP - 26
AB - In this paper, we establish sufficient conditions for the existence of solutions for nonlinear Hadamard-type implicit fractional differential equations with finite delay. The proof of the main results is based on the measure of noncompactness and the Darbo’s and Mönch’s fixed point theorems. An example is included to show the applicability of our results.
LA - eng
KW - Hadamard’s fractional derivative; implicit fractional differential equations in Banach space; fractional integral; existence; Gronwall’s lemma for singular kernels; Measure of noncompactness; fixed point
UR - http://eudml.org/doc/286701
ER -

References

top
  1. Abbas, S., Benchohra, M., N’Guérékata, G. M., Topics in Fractional Differential Equations, . Springer-Verlag, New York, 2012. (2012) Zbl1273.35001MR2962045
  2. Abbas, S., Benchohra, M., N’Guérékata, G. M., Advanced Fractional Differential and Integral Equations, . Nova Science Publishers, New York, 2015. (2015) Zbl1314.34002MR3309582
  3. Agarwal, R. P., Meehan, M., O’Regan, D., 10.1017/CBO9780511543005.008, . Cambridge University Press, Cambridge, 2001. (2001) Zbl0960.54027MR1825411DOI10.1017/CBO9780511543005.008
  4. Ahmad, B., Ntouyas, S. K., 10.2478/s13540-014-0173-5, . Fract. Calc. Appl. Anal. 17 (2014), 348–360. (2014) Zbl1312.34005MR3181059DOI10.2478/s13540-014-0173-5
  5. Ahmad, B., Ntouyas, S. K., Initial value problems of fractional order Hadamard-type functional differential equations, . Electron. J. Differential Equations 2015, 77 (2015), 1–9. (2015) Zbl1320.34109MR3337854
  6. Akhmerov, K. K., Kamenskii, M. I., Potapov, A. S., Rodkina, A. E., Sadovskii, B. N., Measures of Noncompactness and Condensing Operators, . Birkhäuser Verlag, Basel, Boston, Berlin, 1992. (1992) MR1153247
  7. Appell, J., 10.1016/0022-247X(81)90261-4, . J. Math. Anal. Appl. 83 (1981), 251–263. (1981) Zbl0495.45007MR0632341DOI10.1016/0022-247X(81)90261-4
  8. Baleanu, D., Güvenç, Z. B., Machado, J. A. T., New Trends in Nanotechnologiy and Fractional Calculus Applications, . Springer, New York, 2010. (2010) MR2605606
  9. Banaś, J., Goebel, K., Measures of Noncompactness in Banach Spaces, . Lecture Notes in Pure and Applied Mathematics 60, Marcel Dekker, New York, 1980. (1980) MR0591679
  10. Banaś, J., Olszowy, L., Measures of noncompactness related to monotonicity, . Comment. Math. 41 (2001), 13–23. (2001) Zbl0999.47041MR1876707
  11. Benchohra, M., Bouriah, S., Existence and stability results for nonlinear boundary value problem for implicit differential equations of fractional order, (2015) 
  12. Benchohra, M., Bouriah, S., Henderson, J., Existence and stability results for nonlinear implicit neutral fractional differential equations with finite delay and impulses, . Comm. Appl. Nonlin. Anal. 22 (2015), 46–67. (2015) Zbl1358.34088MR3363687
  13. Butzer, P. L., Kilbas, A. A., Trujillo, J. J., 10.1016/S0022-247X(02)00049-5, . J. Math. Anal. Appl. 269 (2002), 387–400. (2002) Zbl1027.26004MR1907120DOI10.1016/S0022-247X(02)00049-5
  14. Granas, A., Dugundji, J., 10.1007/978-0-387-21593-8, . Springer-Verlag, New York, 2003. (2003) Zbl1025.47002MR1987179DOI10.1007/978-0-387-21593-8
  15. Guo, D. J., Lakshmikantham, V., Liu, X., Nonlinear Integral Equations in Abstract Spaces, . Kluwer Academic Publishers, Dordrecht, 1996. (1996) Zbl0866.45004MR1418859
  16. Hadamard, J., Essai sur l’étude des fonctions données par leur developpement de Taylor, . J. Math. Pure Appl. Ser. 8 (1892), 101–186. (1892) 
  17. Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., Theory and Applications of Fractional Differential Equations, . North-Holland Mathematics Studies 204, Elsevier Science B.V., Amsterdam, 2006. (2006) Zbl1092.45003MR2218073
  18. Kilbas, A. A., Trujillo, J. J., 10.1080/1065246031000074443, . Integral Transform. Spec. Funct. 14 (2003), 413–427. (2003) Zbl1043.26004MR2005999DOI10.1080/1065246031000074443
  19. Lin, S., Generalised Gronwall inequalities and their applications to fractional differential equations, . J. Ineq. Appl. 2013, 549 (2013), 1–9. (2013) MR3212979
  20. Mönch, H., 10.1016/0362-546X(80)90010-3, . Nonlinear Anal. 4 (1980), 985–999. (1980) MR0586861DOI10.1016/0362-546X(80)90010-3
  21. Nieto, J. J., Ouahab, A., Venktesh, V., 10.3390/math3020398, . Mathematics 3, 2 (2015), 398–411. (2015) Zbl1322.34012DOI10.3390/math3020398
  22. Podlubny, I., Fractional Differential Equations, . Academic Press, San Diego, 1999. (1999) Zbl0924.34008MR1658022
  23. Sun, S., Zhao, Y., Han, Z., Li, Y., 10.1016/j.cnsns.2012.06.001, . Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 4961–4967. (2012) Zbl1352.34011MR2960290DOI10.1016/j.cnsns.2012.06.001
  24. Tarasov, V. E., Fractional Dynamics: Application of Fractional Calculus to Dynamics of particles, Fields and Media, . Springer & Higher Education Press, Heidelberg & Beijing, 2010. (2010) MR2796453
  25. Yosida, K., Functional Analysis, . 6th edn., Springer-Verlag, Berlin, 1980. (1980) Zbl0435.46002MR0617913
  26. Zhao, Y., Sun, S., Han, Z., Li, Q., 10.1016/j.camwa.2011.03.041, . Comput. Math. Appl. 62 (2011), 1312–1324. (2011) Zbl1228.45017MR2824718DOI10.1016/j.camwa.2011.03.041

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.