The Group of Invertible Elements of the Algebra of Quaternions

Irina A. Kuzmina; Marie Chodorová

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2016)

  • Volume: 55, Issue: 1, page 53-58
  • ISSN: 0231-9721

Abstract

top
We have, that all two-dimensional subspaces of the algebra of quaternions, containing a unit, are 2-dimensional subalgebras isomorphic to the algebra of complex numbers. It was proved in the papers of N. E. Belova. In the present article we consider a 2-dimensional subalgebra ( i ) of complex numbers with basis 1 , i and we construct the principal locally trivial bundle which is isomorphic to the Hopf fibration.

How to cite

top

Kuzmina, Irina A., and Chodorová, Marie. "The Group of Invertible Elements of the Algebra of Quaternions." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 55.1 (2016): 53-58. <http://eudml.org/doc/286705>.

@article{Kuzmina2016,
abstract = {We have, that all two-dimensional subspaces of the algebra of quaternions, containing a unit, are 2-dimensional subalgebras isomorphic to the algebra $\mathbb \{C\}$ of complex numbers. It was proved in the papers of N. E. Belova. In the present article we consider a 2-dimensional subalgebra $(i)$ of complex numbers with basis $\{1, i\}$ and we construct the principal locally trivial bundle which is isomorphic to the Hopf fibration.},
author = {Kuzmina, Irina A., Chodorová, Marie},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Group of invertible elements; algebra of quaternions; principal locally trivial bundle; 2-dimensional subalgebras; structural group; unit; Hopf fibration},
language = {eng},
number = {1},
pages = {53-58},
publisher = {Palacký University Olomouc},
title = {The Group of Invertible Elements of the Algebra of Quaternions},
url = {http://eudml.org/doc/286705},
volume = {55},
year = {2016},
}

TY - JOUR
AU - Kuzmina, Irina A.
AU - Chodorová, Marie
TI - The Group of Invertible Elements of the Algebra of Quaternions
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2016
PB - Palacký University Olomouc
VL - 55
IS - 1
SP - 53
EP - 58
AB - We have, that all two-dimensional subspaces of the algebra of quaternions, containing a unit, are 2-dimensional subalgebras isomorphic to the algebra $\mathbb {C}$ of complex numbers. It was proved in the papers of N. E. Belova. In the present article we consider a 2-dimensional subalgebra $(i)$ of complex numbers with basis ${1, i}$ and we construct the principal locally trivial bundle which is isomorphic to the Hopf fibration.
LA - eng
KW - Group of invertible elements; algebra of quaternions; principal locally trivial bundle; 2-dimensional subalgebras; structural group; unit; Hopf fibration
UR - http://eudml.org/doc/286705
ER -

References

top
  1. Alekseevsky, D. V., Marchiafava, S., Pontecorvo, M., 10.1090/S0002-9947-99-02201-1, . Trans. Amer. Math. Soc. 351, 3 (1999), 997–1014. (1999) Zbl0933.53017MR1475674DOI10.1090/S0002-9947-99-02201-1
  2. Bělohlávková, J., Mikeš, J., Pokorná, O., On 4-planar mappings of special almost antiquaternionic spaces, . Rend. Circ. Mat. Palermo, II. Ser. 66 (2001), 97–103. (2001) Zbl1013.53022MR1826682
  3. Bělohlávková, J., Mikeš, J., Pokorná, O., 4-planar mappings of almost quaternionic and almost antiquaternionic spaces, . Gen. Math. 5 (1997), 101–108. (1997) Zbl0969.53006MR1723598
  4. Belova, N. E., Bundles of Algebras of Dimension 4, . Kazan. Dep. in VINITI, Kazan University 3037-B99, Kazan, 1999. (1999) 
  5. Belova, N. E., Bundles defined by associative algebras, . Diss. on scientific degree candidate Sci., Science competition, Kazan University, Kazan, 2001. (2001) 
  6. Berger, M., Geometry I, . Springer, New York–Berlin–Heidelberg, 1987. (1987) Zbl0606.51001
  7. Bushmanova, G. V., Norden, A. P., Elements of conformal geometry, . Kazan University, Kazan, 1972. (1972) MR0370386
  8. Dubrovin, B. A., Novikov, S. P., Fomenko, A. T., Modern Geometry. Methods and Applications, . Nauka, Moscow, 1979. (1979) MR0566582
  9. Hrdina, J., Slovák, J., 10.1007/s10455-006-9023-y, . Ann. Global Anal. Geom. 29, 4 (2006), 343–354. (2006) Zbl1097.53008MR2251428DOI10.1007/s10455-006-9023-y
  10. Hinterleitner, I., 4-planar mappings of quaternionic Kähler manifolds, . In: Geometric methods in physics, 31 workshop, Białowieża, Poland, June 24–30, 2012. Selected papers based on the presentations at the workshop, Birkhäuser/Springer, Basel, (2013), 187–193. (2013) Zbl1308.53073MR3364004
  11. Kurbatova, I. N., 4-quasi-planar mappings of almost quaternion manifolds, . Sov. Math. 30 (1986), 100–104, transl. from Izv. Vyssh. Uchebn. Zaved., Mat., 1 (1986), 75–78. (1986) Zbl0602.53029
  12. Kuzmina, I. A., Mikeš, J., Vanžurová, A., The projectivization of conformal models of fibrations determined by the algebra of quaternions, . Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Math. 50, 1 (2011), 91–98. (2011) Zbl1252.53023MR2920701
  13. Kuzmina, I., Mikeš, J., On pseudoconformal models of fibrations determined by the algebra of antiquaternions and projectivization of them, . Ann. Math. Inform. 42 (2013), 57–64. (2013) Zbl1299.53042MR3148230
  14. Mikeš, J., Bělohlávková, J., Pokorná, O., On special 4-planar mappings of almost Hermitian quaternionic spaces, . In: Proc. 2nd Meeting on Quaternionic Structures in Math. and Phys., electronic only, Roma, Italy, September 6–10, 1999, Dip. di Matematica “Guido Castelnuovo”, Univ. di Roma “La Sapienza”, Rome, (2001), 265–271. (2001) Zbl1032.53008MR1848666
  15. Mikeš, J., Jukl, M., Juklová, L., 10.1007/s10958-011-0321-y, . J. Math. Sci., New York 174, 5 (2011), 627–640; translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz., 124, 1 (2010). (2011) Zbl1332.53020MR2882720DOI10.1007/s10958-011-0321-y
  16. Jukl, M., Juklová, L., Mikeš, J., 10.1007/s10958-015-2381-x, . J. Math. Sci., New York 207, 3 (2015), 485–511; translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz., 126 (2013), 219–261. (2015) Zbl1317.13057DOI10.1007/s10958-015-2381-x
  17. Norden, A. P., Spaces of Affine Connection, . Nauka, Moscow, 1976. (1976) MR0467565
  18. Postnikov, M. M., Lectures on the Geometry. Semester IV. Differential Geometry, . Nauka, Moscow, 1988. (1988) MR0985587
  19. Rozenfeld, B. A., Higher-dimensional Spaces, . Nauka, Moscow, 1966. (1966) 
  20. Rozenfeld, B. A., Geometry of Lie Groups, . Kluwer, Dordrecht–Boston–London, 1997. (1997) 
  21. Shapukov, B. N., Connections on a differential fibred bundle, . Tr. Geom. Sem. Kazan. Univ. 12 (1980), 97–109. (1980) MR0622541
  22. Vishnevsky, V. V., Shirokov, A. P., Shurygin, V. V., Spaces over Algebras (Prostranstva nad algebrami), . Kazan University Press, Kazan’, 1985, (in Russian). (1985) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.