The Group of Invertible Elements of the Algebra of Quaternions
Irina A. Kuzmina; Marie Chodorová
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2016)
- Volume: 55, Issue: 1, page 53-58
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topKuzmina, Irina A., and Chodorová, Marie. "The Group of Invertible Elements of the Algebra of Quaternions." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 55.1 (2016): 53-58. <http://eudml.org/doc/286705>.
@article{Kuzmina2016,
abstract = {We have, that all two-dimensional subspaces of the algebra of quaternions, containing a unit, are 2-dimensional subalgebras isomorphic to the algebra $\mathbb \{C\}$ of complex numbers. It was proved in the papers of N. E. Belova. In the present article we consider a 2-dimensional subalgebra $(i)$ of complex numbers with basis $\{1, i\}$ and we construct the principal locally trivial bundle which is isomorphic to the Hopf fibration.},
author = {Kuzmina, Irina A., Chodorová, Marie},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Group of invertible elements; algebra of quaternions; principal locally trivial bundle; 2-dimensional subalgebras; structural group; unit; Hopf fibration},
language = {eng},
number = {1},
pages = {53-58},
publisher = {Palacký University Olomouc},
title = {The Group of Invertible Elements of the Algebra of Quaternions},
url = {http://eudml.org/doc/286705},
volume = {55},
year = {2016},
}
TY - JOUR
AU - Kuzmina, Irina A.
AU - Chodorová, Marie
TI - The Group of Invertible Elements of the Algebra of Quaternions
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2016
PB - Palacký University Olomouc
VL - 55
IS - 1
SP - 53
EP - 58
AB - We have, that all two-dimensional subspaces of the algebra of quaternions, containing a unit, are 2-dimensional subalgebras isomorphic to the algebra $\mathbb {C}$ of complex numbers. It was proved in the papers of N. E. Belova. In the present article we consider a 2-dimensional subalgebra $(i)$ of complex numbers with basis ${1, i}$ and we construct the principal locally trivial bundle which is isomorphic to the Hopf fibration.
LA - eng
KW - Group of invertible elements; algebra of quaternions; principal locally trivial bundle; 2-dimensional subalgebras; structural group; unit; Hopf fibration
UR - http://eudml.org/doc/286705
ER -
References
top- Alekseevsky, D. V., Marchiafava, S., Pontecorvo, M., 10.1090/S0002-9947-99-02201-1, . Trans. Amer. Math. Soc. 351, 3 (1999), 997–1014. (1999) Zbl0933.53017MR1475674DOI10.1090/S0002-9947-99-02201-1
- Bělohlávková, J., Mikeš, J., Pokorná, O., On 4-planar mappings of special almost antiquaternionic spaces, . Rend. Circ. Mat. Palermo, II. Ser. 66 (2001), 97–103. (2001) Zbl1013.53022MR1826682
- Bělohlávková, J., Mikeš, J., Pokorná, O., 4-planar mappings of almost quaternionic and almost antiquaternionic spaces, . Gen. Math. 5 (1997), 101–108. (1997) Zbl0969.53006MR1723598
- Belova, N. E., Bundles of Algebras of Dimension 4, . Kazan. Dep. in VINITI, Kazan University 3037-B99, Kazan, 1999. (1999)
- Belova, N. E., Bundles defined by associative algebras, . Diss. on scientific degree candidate Sci., Science competition, Kazan University, Kazan, 2001. (2001)
- Berger, M., Geometry I, . Springer, New York–Berlin–Heidelberg, 1987. (1987) Zbl0606.51001
- Bushmanova, G. V., Norden, A. P., Elements of conformal geometry, . Kazan University, Kazan, 1972. (1972) MR0370386
- Dubrovin, B. A., Novikov, S. P., Fomenko, A. T., Modern Geometry. Methods and Applications, . Nauka, Moscow, 1979. (1979) MR0566582
- Hrdina, J., Slovák, J., 10.1007/s10455-006-9023-y, . Ann. Global Anal. Geom. 29, 4 (2006), 343–354. (2006) Zbl1097.53008MR2251428DOI10.1007/s10455-006-9023-y
- Hinterleitner, I., 4-planar mappings of quaternionic Kähler manifolds, . In: Geometric methods in physics, 31 workshop, Białowieża, Poland, June 24–30, 2012. Selected papers based on the presentations at the workshop, Birkhäuser/Springer, Basel, (2013), 187–193. (2013) Zbl1308.53073MR3364004
- Kurbatova, I. N., 4-quasi-planar mappings of almost quaternion manifolds, . Sov. Math. 30 (1986), 100–104, transl. from Izv. Vyssh. Uchebn. Zaved., Mat., 1 (1986), 75–78. (1986) Zbl0602.53029
- Kuzmina, I. A., Mikeš, J., Vanžurová, A., The projectivization of conformal models of fibrations determined by the algebra of quaternions, . Acta Univ. Palacki. Olomuc., Fac. Rer. Nat., Math. 50, 1 (2011), 91–98. (2011) Zbl1252.53023MR2920701
- Kuzmina, I., Mikeš, J., On pseudoconformal models of fibrations determined by the algebra of antiquaternions and projectivization of them, . Ann. Math. Inform. 42 (2013), 57–64. (2013) Zbl1299.53042MR3148230
- Mikeš, J., Bělohlávková, J., Pokorná, O., On special 4-planar mappings of almost Hermitian quaternionic spaces, . In: Proc. 2nd Meeting on Quaternionic Structures in Math. and Phys., electronic only, Roma, Italy, September 6–10, 1999, Dip. di Matematica “Guido Castelnuovo”, Univ. di Roma “La Sapienza”, Rome, (2001), 265–271. (2001) Zbl1032.53008MR1848666
- Mikeš, J., Jukl, M., Juklová, L., 10.1007/s10958-011-0321-y, . J. Math. Sci., New York 174, 5 (2011), 627–640; translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz., 124, 1 (2010). (2011) Zbl1332.53020MR2882720DOI10.1007/s10958-011-0321-y
- Jukl, M., Juklová, L., Mikeš, J., 10.1007/s10958-015-2381-x, . J. Math. Sci., New York 207, 3 (2015), 485–511; translation from Itogi Nauki Tekh., Ser. Sovrem. Mat. Prilozh., Temat. Obz., 126 (2013), 219–261. (2015) Zbl1317.13057DOI10.1007/s10958-015-2381-x
- Norden, A. P., Spaces of Affine Connection, . Nauka, Moscow, 1976. (1976) MR0467565
- Postnikov, M. M., Lectures on the Geometry. Semester IV. Differential Geometry, . Nauka, Moscow, 1988. (1988) MR0985587
- Rozenfeld, B. A., Higher-dimensional Spaces, . Nauka, Moscow, 1966. (1966)
- Rozenfeld, B. A., Geometry of Lie Groups, . Kluwer, Dordrecht–Boston–London, 1997. (1997)
- Shapukov, B. N., Connections on a differential fibred bundle, . Tr. Geom. Sem. Kazan. Univ. 12 (1980), 97–109. (1980) MR0622541
- Vishnevsky, V. V., Shirokov, A. P., Shurygin, V. V., Spaces over Algebras (Prostranstva nad algebrami), . Kazan University Press, Kazan’, 1985, (in Russian). (1985)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.