The -graded identities of the Grassmann Algebra
Archivum Mathematicum (2016)
- Volume: 052, Issue: 3, page 141-158
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topCentrone, Lucio. "The $G$-graded identities of the Grassmann Algebra." Archivum Mathematicum 052.3 (2016): 141-158. <http://eudml.org/doc/286707>.
@article{Centrone2016,
abstract = {Let $G$ be a finite abelian group with identity element $1_G$ and $L=\bigoplus _\{g\in G\}L^g$ be an infinite dimensional $G$-homogeneous vector space over a field of characteristic $0$. Let $E=E(L)$ be the Grassmann algebra generated by $L$. It follows that $E$ is a $G$-graded algebra. Let $|G|$ be odd, then we prove that in order to describe any ideal of $G$-graded identities of $E$ it is sufficient to deal with $G^\{\prime \}$-grading, where $|G^\{\prime \}| \le |G|$, $\dim _FL^\{1_\{G^\{\prime \}\}\}=\infty $ and $\dim _FL^\{g^\{\prime \}\}<\infty $ if $g^\{\prime \}\ne 1_\{G^\{\prime \}\}$. In the same spirit of the case $|G|$ odd, if $|G|$ is even it is sufficient to study only those $G$-gradings such that $\dim _FL^g=\infty $, where $o(g)=2$, and all the other components are finite dimensional. We also compute graded cocharacters and codimensions of $E$ in the case $\dim L^\{1_G\}=\infty $ and $\dim L^g<\infty $ if $g\ne 1_G$.},
author = {Centrone, Lucio},
journal = {Archivum Mathematicum},
keywords = {graded polynomial identities},
language = {eng},
number = {3},
pages = {141-158},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {The $G$-graded identities of the Grassmann Algebra},
url = {http://eudml.org/doc/286707},
volume = {052},
year = {2016},
}
TY - JOUR
AU - Centrone, Lucio
TI - The $G$-graded identities of the Grassmann Algebra
JO - Archivum Mathematicum
PY - 2016
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 052
IS - 3
SP - 141
EP - 158
AB - Let $G$ be a finite abelian group with identity element $1_G$ and $L=\bigoplus _{g\in G}L^g$ be an infinite dimensional $G$-homogeneous vector space over a field of characteristic $0$. Let $E=E(L)$ be the Grassmann algebra generated by $L$. It follows that $E$ is a $G$-graded algebra. Let $|G|$ be odd, then we prove that in order to describe any ideal of $G$-graded identities of $E$ it is sufficient to deal with $G^{\prime }$-grading, where $|G^{\prime }| \le |G|$, $\dim _FL^{1_{G^{\prime }}}=\infty $ and $\dim _FL^{g^{\prime }}<\infty $ if $g^{\prime }\ne 1_{G^{\prime }}$. In the same spirit of the case $|G|$ odd, if $|G|$ is even it is sufficient to study only those $G$-gradings such that $\dim _FL^g=\infty $, where $o(g)=2$, and all the other components are finite dimensional. We also compute graded cocharacters and codimensions of $E$ in the case $\dim L^{1_G}=\infty $ and $\dim L^g<\infty $ if $g\ne 1_G$.
LA - eng
KW - graded polynomial identities
UR - http://eudml.org/doc/286707
ER -
References
top- Anisimov, N., 10.1081/AGB-100105997, Comm. Algebra 29 (9) (2001), 4211–4230. (2001) MR1857276DOI10.1081/AGB-100105997
- Centrone, L., 10.1016/j.laa.2011.06.008, Linear Algebra Appl. 435 (12) (2011), 3297–3313. (2011) MR2831611DOI10.1016/j.laa.2011.06.008
- da Silva, V.R.T., 10.1080/00927870802502829, Comm. Algebra 37 (9) (2009), 3342–3359. (2009) MR2554206DOI10.1080/00927870802502829
- Di Vincenzo, O.M., A note on the identities of the Grassmann algebras, Boll. Un. Mat. Ital. A (7) 5 (3) (1991), 307–315. (1991) Zbl0758.16008MR1138544
- Di Vincenzo, O.M., 10.1080/00927879608825751, Comm. Algebra 24 (10) (1996), 3293–3310. (1996) Zbl0880.16013MR1402563DOI10.1080/00927879608825751
- Di Vincenzo, O.M., da Silva, V.R.T., On -graded polynomial identities of the Grassmann algebra, Linear Algebra Appl. 431 (2009), 56–72. (2009) MR2522556
- Di Vincenzo, O.M., Drensky, V., Nardozza, V., 10.1081/AGB-120016768, Comm. Algebra 31 (1) (2003), 437–461. (2003) MR1969232DOI10.1081/AGB-120016768
- Drensky, V., Formanek, E., Polynomial identity rings, Birkhauser Verlag, Basel – Boston – Berlin, 2000. (2000) MR2064082
- Giambruno, A., Mischenko, S., Zaicev, M.V., 10.1081/AGB-100105975, Comm. Algebra 29 (9) (2001), 3787–3800. (2001) MR1857014DOI10.1081/AGB-100105975
- Kemer, A.R., Varieties and -graded algebras, Izv. Akad. Nauk SSSR, Ser. Mat. 48 (1984), 1042–1059, (Russian) Translation: Math. USSR, Izv. 25 (1985), 359–374. (1984) MR0764308
- Kemer, A.R., Ideals of identities of associative algebras, Transl. Math. Monogr., vol. 87, Amer. Math. Soc., Providence, RI, 1991. (1991) Zbl0732.16001MR1108620
- Krakovski, D., Regev, A., The polynomial identities of the Grassmann algebra, Trans. Amer. Math. Soc. 181 (1973), 429–438. (1973) MR0325658
- Latyshev, V.N., On the choice of basis in a -ideal, Sibirs. Mat. Z. 4 (5) (1963), 1122–1126. (1963) MR0156874
- Olsson, J.B., Regev, A., 10.1016/0021-8693(76)90247-7, J. Algebra 38 (1976), 100–111. (1976) Zbl0323.16002MR0409547DOI10.1016/0021-8693(76)90247-7
- Sagan, B.E., The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions, Graduate Texts in Mathematics, vol. 203, Springer Verlag, 2000. (2000) MR1824028
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.