-graded polynomial identities for
2000 Mathematics Subject Classification: 16R10, 16R20, 16R50The algebra Mn(K) of the matrices n × n over a field K can be regarded as a Z-graded algebra. In this paper, it is proved that if K is an infinite field, all the Z-graded polynomial identities of Mn(K) follow from the identities: x = 0, |α(x)| ≥ n, xy = yx, α(x) = α(y) = 0, xyz = zyx, α(x) = −α(y) = α(z ), where α is the degree of the corresponding variable. This is a generalization of a result of Vasilovsky about the Z-graded identities...
∗The first author was partially supported by MURST of Italy; the second author was par- tially supported by RFFI grant 99-01-00233.It was recently proved that any variety of associative algebras over a field of characteristic zero has an integral exponential growth. It is known that a variety V has polynomial growth if and only if V does not contain the Grassmann algebra and the algebra of 2 × 2 upper triangular matrices. It follows that any variety with overpolynomial growth has exponent at least...
We prove a theorem (for arbitrary ring varieties and, in a stronger form, for varieties of associative rings) which basically reduces the problem of a description of varieties with distributive subvariety lattice to the case of algebras over a finite prime field.
This project was partially supported by RFBR, grants 99-01-00233, 98-01-01020 and 00-15-96128.We study the asymptotic behaviour of numerical characteristics of polynomial identities of Lie algebras over a field of characteristic 0. In particular we investigate the colength for the cocharacters of polynilpotent varieties of Lie algebras. We prove that there exist polynilpotent Lie varieties with exponential and overexponential colength growth. We give the exact asymptotics for the colength of a product...
2000 Mathematics Subject Classification: 15A15, 15A24, 15A33, 16S50.For an n×n matrix A over an arbitrary unitary ring R, we obtain the following Cayley-Hamilton identity with right matrix coefficients: (λ0I+C0)+A(λ1I+C1)+… +An-1(λn-1I+Cn-1)+An (n!I+Cn) = 0, where λ0+λ1x+…+λn-1 xn-1+n!xn is the right characteristic polynomial of A in R[x], I ∈ Mn(R) is the identity matrix and the entries of the n×n matrices Ci, 0 ≤ i ≤ n are in [R,R]. If R is commutative, then C0 = C1 = … = Cn-1 = Cn = 0 and our...
Partially supported by grant RFFI 98-01-01020.Let Uc be the variety of associative algebras generated by the algebra of all upper triangular matrices, the field being arbitrary. We prove that the upper exponent of any subvariety V ⊂ Uc coincides with the lower exponent and is an integer.
In this paper some infinitely based varieties of groups are constructed and these results are transferred to the associative algebras (or Lie algebras) over an infinite field of an arbitrary positive characteristic.
2000 Mathematics Subject Classification: 16R10, 16R30.The classical theorem of Weitzenböck states that the algebra of invariants K[X]^g of a single unipotent transformation g ∈ GLm(K) acting on the polynomial algebra K[X] = K[x1, . . . , xm] over a field K of characteristic 0 is finitely generated.Partially supported by Grant MM-1106/2001 of the Bulgarian National Science Fund.
2000 Mathematics Subject Classification: 16R50, 16R10.The paper is a survey on involutions (anti-automorphisms of order two) of different kinds. Starting with the first systematic investigations on involutions of central simple algebras due to Albert the author emphasizes on their basic properties, the conditions on their existence and their correspondence with structural characteristics of the algebras. Focusing on matrix algebras a complete description of involutions of the first kind on Mn(F)...
We study matrix identities involving multiplication and unary operations such as transposition or Moore–Penrose inversion. We prove that in many cases such identities admit no finite basis.