On Metrizable Locally Homogeneous Connections in Dimension

Alena Vanžurová

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2016)

  • Volume: 55, Issue: 1, page 157-166
  • ISSN: 0231-9721

Abstract

top
We discuss metrizability of locally homogeneous affine connections on affine 2-manifolds and give some partial answers, using the results from [Arias-Marco, T., Kowalski, O.: Classification of locally homogeneous affine connections with arbitrary torsion on 2-dimensional manifolds. Monatsh. Math. 153 (2008), 1–18.], [Kowalski, O., Opozda, B., Vlášek, Z.: A classification of locally homogeneous connections on 2-dimensional manifolds vis group-theoretical approach. CEJM 2, 1 (2004), 87–102.], [Vanžurová, A.: On metrizability of locally homogeneous affine connections on 2-dimensional manifolds. Arch. Math. (Brno) 49 (2013), 199–209.], [Vanžurová, A., Žáčková, P.: Metrizability of connections on two-manifolds. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 48 (2009), 157–170.].

How to cite

top

Vanžurová, Alena. "On Metrizable Locally Homogeneous Connections in Dimension." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 55.1 (2016): 157-166. <http://eudml.org/doc/286709>.

@article{Vanžurová2016,
abstract = {We discuss metrizability of locally homogeneous affine connections on affine 2-manifolds and give some partial answers, using the results from [Arias-Marco, T., Kowalski, O.: Classification of locally homogeneous affine connections with arbitrary torsion on 2-dimensional manifolds. Monatsh. Math. 153 (2008), 1–18.], [Kowalski, O., Opozda, B., Vlášek, Z.: A classification of locally homogeneous connections on 2-dimensional manifolds vis group-theoretical approach. CEJM 2, 1 (2004), 87–102.], [Vanžurová, A.: On metrizability of locally homogeneous affine connections on 2-dimensional manifolds. Arch. Math. (Brno) 49 (2013), 199–209.], [Vanžurová, A., Žáčková, P.: Metrizability of connections on two-manifolds. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 48 (2009), 157–170.].},
author = {Vanžurová, Alena},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Manifold; affine connection; Riemannian connection; Lorentzian connection; Killing vector field; locally homogeneous space},
language = {eng},
number = {1},
pages = {157-166},
publisher = {Palacký University Olomouc},
title = {On Metrizable Locally Homogeneous Connections in Dimension},
url = {http://eudml.org/doc/286709},
volume = {55},
year = {2016},
}

TY - JOUR
AU - Vanžurová, Alena
TI - On Metrizable Locally Homogeneous Connections in Dimension
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2016
PB - Palacký University Olomouc
VL - 55
IS - 1
SP - 157
EP - 166
AB - We discuss metrizability of locally homogeneous affine connections on affine 2-manifolds and give some partial answers, using the results from [Arias-Marco, T., Kowalski, O.: Classification of locally homogeneous affine connections with arbitrary torsion on 2-dimensional manifolds. Monatsh. Math. 153 (2008), 1–18.], [Kowalski, O., Opozda, B., Vlášek, Z.: A classification of locally homogeneous connections on 2-dimensional manifolds vis group-theoretical approach. CEJM 2, 1 (2004), 87–102.], [Vanžurová, A.: On metrizability of locally homogeneous affine connections on 2-dimensional manifolds. Arch. Math. (Brno) 49 (2013), 199–209.], [Vanžurová, A., Žáčková, P.: Metrizability of connections on two-manifolds. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 48 (2009), 157–170.].
LA - eng
KW - Manifold; affine connection; Riemannian connection; Lorentzian connection; Killing vector field; locally homogeneous space
UR - http://eudml.org/doc/286709
ER -

References

top
  1. Arias-Marco, T., Kowalski, O., 10.1007/s00605-007-0494-0, . Monatsh. Math. 153 (2008), 1–18. (2008) Zbl1155.53009MR2366132DOI10.1007/s00605-007-0494-0
  2. Kobayashi, S., Nomizu, K., Foundations of Differential Geometry I, II, . Wiley-Intersc. Publ., New York, Chichester, Brisbane, Toronto, Singapore, 1991. (1991) 
  3. Kowalski, O., Opozda, B., Vlášek, Z., 10.4064/cm-81-1-123-139, . Coll. Math. 81, 1 (1999), 123–139. (1999) Zbl0942.53019MR1716190DOI10.4064/cm-81-1-123-139
  4. Kowalski, O., Opozda, B., Vlášek, Z., 10.1007/s006050070041, . Monatsh. Math. 130 (2000), 109–125. (2000) Zbl0993.53008MR1767180DOI10.1007/s006050070041
  5. Kowalski, O., Opozda, B., Vlášek, Z., A classification of locally homogeneous connections on 2-dimensional manifolds vis group-theoretical approach, . CEJM 2, 1 (2004), 87–102. (2004) MR2041671
  6. Mikeš, J., Stepanova, E., Vanžurová, A., Differential Geometry of Special Mappings, . Palacký University, Olomouc, 2015. (2015) Zbl1337.53001MR3442960
  7. Mikeš, J., Vanžurová, A., Hinterleitner, I., Geodesic Mappings and Some Generalizations, . Palacký University, Olomouc, 2009. (2009) Zbl1222.53002MR2682926
  8. Olver, P. J., Equivalence, Invariants and Symmetry, . Cambridge Univ. Press, Cambridge, 1995. (1995) Zbl0837.58001MR1337276
  9. Opozda, B., 10.1016/j.difgeo.2004.03.005, . Diff. Geom. Appl. 21 (2004), 173–198. (2004) Zbl1063.53024MR2073824DOI10.1016/j.difgeo.2004.03.005
  10. Singer, I. M., 10.1002/cpa.3160130408, . Comm. Pure Appl. Math. 13 (1960), 685–697. (1960) Zbl0171.42503MR0131248DOI10.1002/cpa.3160130408
  11. Vanžurová, A., Žáčková, P., Metrization of linear connections, . Aplimat, J. of Applied Math. (Bratislava) 2, 1 (2009), 151–163. (2009) 
  12. Vanžurová, A., Žáčková, P., Metrizability of connections on two-manifolds, . Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 48 (2009), 157–170. (2009) Zbl1195.53023MR2641956
  13. Vanžurová, A., On metrizability of locally homogeneous affine connections on 2-dimensional manifolds, . Arch. Math. (Brno) 49 (2013), 199–209. (2013) MR3159333
  14. Vanžurová, A., On metrizability of a class of 2-manifolds with linear connection, . Miskolc Math. Notes 14, 3 (2013), 311–317. (2013) Zbl1299.53034MR3144100

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.