On Metrizable Locally Homogeneous Connections in Dimension
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2016)
- Volume: 55, Issue: 1, page 157-166
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topVanžurová, Alena. "On Metrizable Locally Homogeneous Connections in Dimension." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 55.1 (2016): 157-166. <http://eudml.org/doc/286709>.
@article{Vanžurová2016,
abstract = {We discuss metrizability of locally homogeneous affine connections on affine 2-manifolds and give some partial answers, using the results from [Arias-Marco, T., Kowalski, O.: Classification of locally homogeneous affine connections with arbitrary torsion on 2-dimensional manifolds. Monatsh. Math. 153 (2008), 1–18.], [Kowalski, O., Opozda, B., Vlášek, Z.: A classification of locally homogeneous connections on 2-dimensional manifolds vis group-theoretical approach. CEJM 2, 1 (2004), 87–102.], [Vanžurová, A.: On metrizability of locally homogeneous affine connections on 2-dimensional manifolds. Arch. Math. (Brno) 49 (2013), 199–209.], [Vanžurová, A., Žáčková, P.: Metrizability of connections on two-manifolds. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 48 (2009), 157–170.].},
author = {Vanžurová, Alena},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Manifold; affine connection; Riemannian connection; Lorentzian connection; Killing vector field; locally homogeneous space},
language = {eng},
number = {1},
pages = {157-166},
publisher = {Palacký University Olomouc},
title = {On Metrizable Locally Homogeneous Connections in Dimension},
url = {http://eudml.org/doc/286709},
volume = {55},
year = {2016},
}
TY - JOUR
AU - Vanžurová, Alena
TI - On Metrizable Locally Homogeneous Connections in Dimension
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2016
PB - Palacký University Olomouc
VL - 55
IS - 1
SP - 157
EP - 166
AB - We discuss metrizability of locally homogeneous affine connections on affine 2-manifolds and give some partial answers, using the results from [Arias-Marco, T., Kowalski, O.: Classification of locally homogeneous affine connections with arbitrary torsion on 2-dimensional manifolds. Monatsh. Math. 153 (2008), 1–18.], [Kowalski, O., Opozda, B., Vlášek, Z.: A classification of locally homogeneous connections on 2-dimensional manifolds vis group-theoretical approach. CEJM 2, 1 (2004), 87–102.], [Vanžurová, A.: On metrizability of locally homogeneous affine connections on 2-dimensional manifolds. Arch. Math. (Brno) 49 (2013), 199–209.], [Vanžurová, A., Žáčková, P.: Metrizability of connections on two-manifolds. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 48 (2009), 157–170.].
LA - eng
KW - Manifold; affine connection; Riemannian connection; Lorentzian connection; Killing vector field; locally homogeneous space
UR - http://eudml.org/doc/286709
ER -
References
top- Arias-Marco, T., Kowalski, O., 10.1007/s00605-007-0494-0, . Monatsh. Math. 153 (2008), 1–18. (2008) Zbl1155.53009MR2366132DOI10.1007/s00605-007-0494-0
- Kobayashi, S., Nomizu, K., Foundations of Differential Geometry I, II, . Wiley-Intersc. Publ., New York, Chichester, Brisbane, Toronto, Singapore, 1991. (1991)
- Kowalski, O., Opozda, B., Vlášek, Z., 10.4064/cm-81-1-123-139, . Coll. Math. 81, 1 (1999), 123–139. (1999) Zbl0942.53019MR1716190DOI10.4064/cm-81-1-123-139
- Kowalski, O., Opozda, B., Vlášek, Z., 10.1007/s006050070041, . Monatsh. Math. 130 (2000), 109–125. (2000) Zbl0993.53008MR1767180DOI10.1007/s006050070041
- Kowalski, O., Opozda, B., Vlášek, Z., A classification of locally homogeneous connections on 2-dimensional manifolds vis group-theoretical approach, . CEJM 2, 1 (2004), 87–102. (2004) MR2041671
- Mikeš, J., Stepanova, E., Vanžurová, A., Differential Geometry of Special Mappings, . Palacký University, Olomouc, 2015. (2015) Zbl1337.53001MR3442960
- Mikeš, J., Vanžurová, A., Hinterleitner, I., Geodesic Mappings and Some Generalizations, . Palacký University, Olomouc, 2009. (2009) Zbl1222.53002MR2682926
- Olver, P. J., Equivalence, Invariants and Symmetry, . Cambridge Univ. Press, Cambridge, 1995. (1995) Zbl0837.58001MR1337276
- Opozda, B., 10.1016/j.difgeo.2004.03.005, . Diff. Geom. Appl. 21 (2004), 173–198. (2004) Zbl1063.53024MR2073824DOI10.1016/j.difgeo.2004.03.005
- Singer, I. M., 10.1002/cpa.3160130408, . Comm. Pure Appl. Math. 13 (1960), 685–697. (1960) Zbl0171.42503MR0131248DOI10.1002/cpa.3160130408
- Vanžurová, A., Žáčková, P., Metrization of linear connections, . Aplimat, J. of Applied Math. (Bratislava) 2, 1 (2009), 151–163. (2009)
- Vanžurová, A., Žáčková, P., Metrizability of connections on two-manifolds, . Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 48 (2009), 157–170. (2009) Zbl1195.53023MR2641956
- Vanžurová, A., On metrizability of locally homogeneous affine connections on 2-dimensional manifolds, . Arch. Math. (Brno) 49 (2013), 199–209. (2013) MR3159333
- Vanžurová, A., On metrizability of a class of 2-manifolds with linear connection, . Miskolc Math. Notes 14, 3 (2013), 311–317. (2013) Zbl1299.53034MR3144100
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.