Guaranteed and computable bounds of the limit load for variational problems with linear growth energy functionals
Jaroslav Haslinger; Sergey Repin; Stanislav Sysala
Applications of Mathematics (2016)
- Volume: 61, Issue: 5, page 527-564
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHaslinger, Jaroslav, Repin, Sergey, and Sysala, Stanislav. "Guaranteed and computable bounds of the limit load for variational problems with linear growth energy functionals." Applications of Mathematics 61.5 (2016): 527-564. <http://eudml.org/doc/286786>.
@article{Haslinger2016,
abstract = {The paper is concerned with guaranteed and computable bounds of the limit (or safety) load, which is one of the most important quantitative characteristics of mathematical models associated with linear growth functionals. We suggest a new method for getting such bounds and illustrate its performance. First, the main ideas are demonstrated with the paradigm of a simple variational problem with a linear growth functional defined on a set of scalar valued functions. Then, the method is extended to classical plasticity models governed by von Mises and Drucker-Prager yield laws. The efficiency of the proposed approach is confirmed by several numerical experiments.},
author = {Haslinger, Jaroslav, Repin, Sergey, Sysala, Stanislav},
journal = {Applications of Mathematics},
keywords = {functionals with linear growth; limit load; truncation method; perfect plasticity; functionals with linear growth; limit load; truncation method; perfect plasticity},
language = {eng},
number = {5},
pages = {527-564},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Guaranteed and computable bounds of the limit load for variational problems with linear growth energy functionals},
url = {http://eudml.org/doc/286786},
volume = {61},
year = {2016},
}
TY - JOUR
AU - Haslinger, Jaroslav
AU - Repin, Sergey
AU - Sysala, Stanislav
TI - Guaranteed and computable bounds of the limit load for variational problems with linear growth energy functionals
JO - Applications of Mathematics
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 5
SP - 527
EP - 564
AB - The paper is concerned with guaranteed and computable bounds of the limit (or safety) load, which is one of the most important quantitative characteristics of mathematical models associated with linear growth functionals. We suggest a new method for getting such bounds and illustrate its performance. First, the main ideas are demonstrated with the paradigm of a simple variational problem with a linear growth functional defined on a set of scalar valued functions. Then, the method is extended to classical plasticity models governed by von Mises and Drucker-Prager yield laws. The efficiency of the proposed approach is confirmed by several numerical experiments.
LA - eng
KW - functionals with linear growth; limit load; truncation method; perfect plasticity; functionals with linear growth; limit load; truncation method; perfect plasticity
UR - http://eudml.org/doc/286786
ER -
References
top- Caboussat, A., Glowinski, R., 10.3934/dcds.2010.27.1447, Discrete Contin. Dyn. Syst. 27 (2010), 1447-1472. (2010) MR2629532DOI10.3934/dcds.2010.27.1447
- Cermak, M., Haslinger, J., Kozubek, T., Sysala, S., 10.1002/zamm.201400069, ZAMM, Z. Angew. Math. Mech. 95 (2015), 1348-1371. (2015) MR3434744DOI10.1002/zamm.201400069
- Chen, W. F., Liu, X. L., Limit Analysis in Soil Mechanics, Elsevier (1990). (1990)
- Christiansen, E., Limit analysis of collapse states, P. G. Ciarlet Handbook of Numerical Analysis, Volume IV: Finite Element Methods (part 2), Numerical Methods for Solids (part 2) North-Holland, Amsterdam 193-312 (1996). (1996) MR1422505
- Neto, E. A. de Souza, Perić, D., Owen, D. R. J., Computational Methods for Plasticity: Theory and Applications, Wiley (2008). (2008)
- Dierkes, U., Hildebrandt, S., Sauvigny, F., Minimal Surfaces, Grundlehren der Mathematischen Wissenschaften 339 Springer, Dordrecht (2010). (2010) Zbl1213.53002MR2566897
- Duvaut, G., Lions, J. L., 10.1007/978-3-642-66165-5, Grundlehren der Mathematischen Wissenschaften 219 Springer, Berlin (1976). (1976) Zbl0331.35002MR0521262DOI10.1007/978-3-642-66165-5
- Ekeland, I., Temam, R., Convex Analysis and Variational Problems, Études Mathématiques Dunod; Gauthier-Villars, Paris French (1974). (1974) Zbl0281.49001MR0463993
- Finn, R., 10.1007/978-1-4613-8584-4, Grundlehren der Mathematischen Wissenschaften 284 Springer, New York (1986). (1986) Zbl0583.35002MR0816345DOI10.1007/978-1-4613-8584-4
- Fučík, S., Kufner, A., Nonlinear Differential Equations, Studies in Applied Mechanics 2 Elsevier Scientific Publishing Company, Amsterdam (1980). (1980) MR0558764
- Giusti, E., Minimal Surfaces and Functions of Bounded Variations, Monographs in Mathematics 80 Birkhäuser, Basel (1984). (1984) MR0775682
- Hansbo, P., A discontinuous finite element method for elasto-plasticity, Int. J. Numer. Methods Biomed. Eng. 26 (2010), 780-789. (2010) Zbl1351.74082MR2642251
- Haslinger, J., Repin, S., Sysala, S., 10.1016/j.cam.2016.02.035, J. Comput. Appl. Math. 303 (2016), 156-170. (2016) MR3479280DOI10.1016/j.cam.2016.02.035
- Johnson, C., Scott, R., A finite element method for problems in perfect plasticity using discontinuous trial functions, Nonlinear Finite Element Analysis in Structural Mechanics Proc. Europe-U.S. Workshop, Bochum, 1980 W. Wunderlich, et al. Springer, Berlin 307-324 (1981). (1981) Zbl0572.73076MR0631535
- Krasnosel'skii, M. A., Topological Methods in the Theory of Nonlinear Integral Equations, International Series of Monographs on Pure and Applied Mathematics 45 Pergamon Press, Oxford (1964). (1964) MR0159197
- Langbein, D. W., 10.1007/3-540-45267-2, Springer Tracts in Modern Physics 178 Springer, Berlin (2002). (2002) Zbl1050.76001MR1991488DOI10.1007/3-540-45267-2
- Liu, F., Zhao, J., 10.1061/(ASCE)GM.1943-5622.0000283, Int. J. Geomech. 13 (2013), 827-839. (2013) DOI10.1061/(ASCE)GM.1943-5622.0000283
- Nitsche, J. C. C., Lectures on Minimal Surfaces: Volume 1: Introduction, Fundamentals, Geometry and Basic Boundary Value Problems. Revised, extended and updated by the author, Cambridge University Press, Cambridge (2011). (2011) MR1015936
- Ramm, E., Strategies for tracing nonlinear response near limit points, Nonlinear Finite Element Analysis in Structural Mechanics W. Wunderlich Proc. Europe-U.S.Workshop, Bochum, 1980 Springer, Berlin 63-89 (1981). (1981)
- Repin, S., Seregin, G., 10.1090/trans2/164/09, Nonlinear Evolution Equations Am. Math. Soc. Ser. 2, 164 189-220 (1995), American Mathematical Society, Providence N. N. Uraltseva. (1995) Zbl0890.73079MR1334144DOI10.1090/trans2/164/09
- Rockafellar, R. T., Convex Analysis, Princeton University Press, Princeton (1970). (1970) Zbl0193.18401MR0274683
- Sloan, S. W., 10.1002/nag.1610120105, Int. J. Numer. Anal. Methods Geomech. 12 (1988), 61-77. (1988) Zbl0626.73117DOI10.1002/nag.1610120105
- Suquet, P.-M., Existence et régularité des solutions des équations de la plasticité parfaite, C. R. Acad. Sci., Paris, Sér. A 286 (1978), French 1201-1204. (1978) MR0501114
- Sysala, S., 10.1002/zamm.201200056, ZAMM, Z. Angew. Math. Mech. 94 (2014), 233-255. (2014) MR3179702DOI10.1002/zamm.201200056
- Sysala, S., Cermak, M., Koudelka, T., Kruis, J., Zeman, J., Blaheta, R., 10.1002/zamm.201500305, ZAMM, Z. Angew. Math. Mech. 96 (2016), 1-21, DOI 10.1002/zamm.201500305. (2016) MR3580287DOI10.1002/zamm.201500305
- Sysala, S., Haslinger, J., Hlaváček, I., Cermak, M., 10.1002/zamm.201300112, ZAMM, Z. Angew. Math. Mech. 95 (2015), 333-353. (2015) Zbl1322.74055MR3340908DOI10.1002/zamm.201300112
- Temam, R., Mathematical Problems in Plasticity, Gauthier-Villars, Montrouge (1983). (1983) MR0711964
- Yu, X., Tin-Loi, F., 10.1016/j.compstruc.2006.08.019, Comput. Struct. 84 (2006), 1906-1917. (2006) DOI10.1016/j.compstruc.2006.08.019
- Zienkiewicz, O. C., Taylor, R. L., The Finite Element Method. Vol. 2. Solid Mechanics, Butterworth-Heinemann, Oxford (2000). (2000) MR1897986
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.