Guaranteed and computable bounds of the limit load for variational problems with linear growth energy functionals

Jaroslav Haslinger; Sergey Repin; Stanislav Sysala

Applications of Mathematics (2016)

  • Volume: 61, Issue: 5, page 527-564
  • ISSN: 0862-7940

Abstract

top
The paper is concerned with guaranteed and computable bounds of the limit (or safety) load, which is one of the most important quantitative characteristics of mathematical models associated with linear growth functionals. We suggest a new method for getting such bounds and illustrate its performance. First, the main ideas are demonstrated with the paradigm of a simple variational problem with a linear growth functional defined on a set of scalar valued functions. Then, the method is extended to classical plasticity models governed by von Mises and Drucker-Prager yield laws. The efficiency of the proposed approach is confirmed by several numerical experiments.

How to cite

top

Haslinger, Jaroslav, Repin, Sergey, and Sysala, Stanislav. "Guaranteed and computable bounds of the limit load for variational problems with linear growth energy functionals." Applications of Mathematics 61.5 (2016): 527-564. <http://eudml.org/doc/286786>.

@article{Haslinger2016,
abstract = {The paper is concerned with guaranteed and computable bounds of the limit (or safety) load, which is one of the most important quantitative characteristics of mathematical models associated with linear growth functionals. We suggest a new method for getting such bounds and illustrate its performance. First, the main ideas are demonstrated with the paradigm of a simple variational problem with a linear growth functional defined on a set of scalar valued functions. Then, the method is extended to classical plasticity models governed by von Mises and Drucker-Prager yield laws. The efficiency of the proposed approach is confirmed by several numerical experiments.},
author = {Haslinger, Jaroslav, Repin, Sergey, Sysala, Stanislav},
journal = {Applications of Mathematics},
keywords = {functionals with linear growth; limit load; truncation method; perfect plasticity; functionals with linear growth; limit load; truncation method; perfect plasticity},
language = {eng},
number = {5},
pages = {527-564},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Guaranteed and computable bounds of the limit load for variational problems with linear growth energy functionals},
url = {http://eudml.org/doc/286786},
volume = {61},
year = {2016},
}

TY - JOUR
AU - Haslinger, Jaroslav
AU - Repin, Sergey
AU - Sysala, Stanislav
TI - Guaranteed and computable bounds of the limit load for variational problems with linear growth energy functionals
JO - Applications of Mathematics
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 5
SP - 527
EP - 564
AB - The paper is concerned with guaranteed and computable bounds of the limit (or safety) load, which is one of the most important quantitative characteristics of mathematical models associated with linear growth functionals. We suggest a new method for getting such bounds and illustrate its performance. First, the main ideas are demonstrated with the paradigm of a simple variational problem with a linear growth functional defined on a set of scalar valued functions. Then, the method is extended to classical plasticity models governed by von Mises and Drucker-Prager yield laws. The efficiency of the proposed approach is confirmed by several numerical experiments.
LA - eng
KW - functionals with linear growth; limit load; truncation method; perfect plasticity; functionals with linear growth; limit load; truncation method; perfect plasticity
UR - http://eudml.org/doc/286786
ER -

References

top
  1. Caboussat, A., Glowinski, R., 10.3934/dcds.2010.27.1447, Discrete Contin. Dyn. Syst. 27 (2010), 1447-1472. (2010) MR2629532DOI10.3934/dcds.2010.27.1447
  2. Cermak, M., Haslinger, J., Kozubek, T., Sysala, S., 10.1002/zamm.201400069, ZAMM, Z. Angew. Math. Mech. 95 (2015), 1348-1371. (2015) MR3434744DOI10.1002/zamm.201400069
  3. Chen, W. F., Liu, X. L., Limit Analysis in Soil Mechanics, Elsevier (1990). (1990) 
  4. Christiansen, E., Limit analysis of collapse states, P. G. Ciarlet Handbook of Numerical Analysis, Volume IV: Finite Element Methods (part 2), Numerical Methods for Solids (part 2) North-Holland, Amsterdam 193-312 (1996). (1996) MR1422505
  5. Neto, E. A. de Souza, Perić, D., Owen, D. R. J., Computational Methods for Plasticity: Theory and Applications, Wiley (2008). (2008) 
  6. Dierkes, U., Hildebrandt, S., Sauvigny, F., Minimal Surfaces, Grundlehren der Mathematischen Wissenschaften 339 Springer, Dordrecht (2010). (2010) Zbl1213.53002MR2566897
  7. Duvaut, G., Lions, J. L., 10.1007/978-3-642-66165-5, Grundlehren der Mathematischen Wissenschaften 219 Springer, Berlin (1976). (1976) Zbl0331.35002MR0521262DOI10.1007/978-3-642-66165-5
  8. Ekeland, I., Temam, R., Convex Analysis and Variational Problems, Études Mathématiques Dunod; Gauthier-Villars, Paris French (1974). (1974) Zbl0281.49001MR0463993
  9. Finn, R., 10.1007/978-1-4613-8584-4, Grundlehren der Mathematischen Wissenschaften 284 Springer, New York (1986). (1986) Zbl0583.35002MR0816345DOI10.1007/978-1-4613-8584-4
  10. Fučík, S., Kufner, A., Nonlinear Differential Equations, Studies in Applied Mechanics 2 Elsevier Scientific Publishing Company, Amsterdam (1980). (1980) MR0558764
  11. Giusti, E., Minimal Surfaces and Functions of Bounded Variations, Monographs in Mathematics 80 Birkhäuser, Basel (1984). (1984) MR0775682
  12. Hansbo, P., A discontinuous finite element method for elasto-plasticity, Int. J. Numer. Methods Biomed. Eng. 26 (2010), 780-789. (2010) Zbl1351.74082MR2642251
  13. Haslinger, J., Repin, S., Sysala, S., 10.1016/j.cam.2016.02.035, J. Comput. Appl. Math. 303 (2016), 156-170. (2016) MR3479280DOI10.1016/j.cam.2016.02.035
  14. Johnson, C., Scott, R., A finite element method for problems in perfect plasticity using discontinuous trial functions, Nonlinear Finite Element Analysis in Structural Mechanics Proc. Europe-U.S. Workshop, Bochum, 1980 W. Wunderlich, et al. Springer, Berlin 307-324 (1981). (1981) Zbl0572.73076MR0631535
  15. Krasnosel'skii, M. A., Topological Methods in the Theory of Nonlinear Integral Equations, International Series of Monographs on Pure and Applied Mathematics 45 Pergamon Press, Oxford (1964). (1964) MR0159197
  16. Langbein, D. W., 10.1007/3-540-45267-2, Springer Tracts in Modern Physics 178 Springer, Berlin (2002). (2002) Zbl1050.76001MR1991488DOI10.1007/3-540-45267-2
  17. Liu, F., Zhao, J., 10.1061/(ASCE)GM.1943-5622.0000283, Int. J. Geomech. 13 (2013), 827-839. (2013) DOI10.1061/(ASCE)GM.1943-5622.0000283
  18. Nitsche, J. C. C., Lectures on Minimal Surfaces: Volume 1: Introduction, Fundamentals, Geometry and Basic Boundary Value Problems. Revised, extended and updated by the author, Cambridge University Press, Cambridge (2011). (2011) MR1015936
  19. Ramm, E., Strategies for tracing nonlinear response near limit points, Nonlinear Finite Element Analysis in Structural Mechanics W. Wunderlich Proc. Europe-U.S.Workshop, Bochum, 1980 Springer, Berlin 63-89 (1981). (1981) 
  20. Repin, S., Seregin, G., 10.1090/trans2/164/09, Nonlinear Evolution Equations Am. Math. Soc. Ser. 2, 164 189-220 (1995), American Mathematical Society, Providence N. N. Uraltseva. (1995) Zbl0890.73079MR1334144DOI10.1090/trans2/164/09
  21. Rockafellar, R. T., Convex Analysis, Princeton University Press, Princeton (1970). (1970) Zbl0193.18401MR0274683
  22. Sloan, S. W., 10.1002/nag.1610120105, Int. J. Numer. Anal. Methods Geomech. 12 (1988), 61-77. (1988) Zbl0626.73117DOI10.1002/nag.1610120105
  23. Suquet, P.-M., Existence et régularité des solutions des équations de la plasticité parfaite, C. R. Acad. Sci., Paris, Sér. A 286 (1978), French 1201-1204. (1978) MR0501114
  24. Sysala, S., 10.1002/zamm.201200056, ZAMM, Z. Angew. Math. Mech. 94 (2014), 233-255. (2014) MR3179702DOI10.1002/zamm.201200056
  25. Sysala, S., Cermak, M., Koudelka, T., Kruis, J., Zeman, J., Blaheta, R., 10.1002/zamm.201500305, ZAMM, Z. Angew. Math. Mech. 96 (2016), 1-21, DOI 10.1002/zamm.201500305. (2016) MR3580287DOI10.1002/zamm.201500305
  26. Sysala, S., Haslinger, J., Hlaváček, I., Cermak, M., 10.1002/zamm.201300112, ZAMM, Z. Angew. Math. Mech. 95 (2015), 333-353. (2015) Zbl1322.74055MR3340908DOI10.1002/zamm.201300112
  27. Temam, R., Mathematical Problems in Plasticity, Gauthier-Villars, Montrouge (1983). (1983) MR0711964
  28. Yu, X., Tin-Loi, F., 10.1016/j.compstruc.2006.08.019, Comput. Struct. 84 (2006), 1906-1917. (2006) DOI10.1016/j.compstruc.2006.08.019
  29. Zienkiewicz, O. C., Taylor, R. L., The Finite Element Method. Vol. 2. Solid Mechanics, Butterworth-Heinemann, Oxford (2000). (2000) MR1897986

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.