Connectivity, toughness, spanning trees of bounded degree, and the spectrum of regular graphs
Sebastian M. Cioabă; Xiaofeng Gu
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 3, page 913-924
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topCioabă, Sebastian M., and Gu, Xiaofeng. "Connectivity, toughness, spanning trees of bounded degree, and the spectrum of regular graphs." Czechoslovak Mathematical Journal 66.3 (2016): 913-924. <http://eudml.org/doc/286790>.
@article{Cioabă2016,
abstract = {The eigenvalues of graphs are related to many of its combinatorial properties. In his fundamental work, Fiedler showed the close connections between the Laplacian eigenvalues and eigenvectors of a graph and its vertex-connectivity and edge-connectivity. We present some new results describing the connections between the spectrum of a regular graph and other combinatorial parameters such as its generalized connectivity, toughness, and the existence of spanning trees with bounded degree.},
author = {Cioabă, Sebastian M., Gu, Xiaofeng},
journal = {Czechoslovak Mathematical Journal},
keywords = {spectral graph theory; eigenvalue; connectivity; toughness; spanning $k$-tree},
language = {eng},
number = {3},
pages = {913-924},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Connectivity, toughness, spanning trees of bounded degree, and the spectrum of regular graphs},
url = {http://eudml.org/doc/286790},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Cioabă, Sebastian M.
AU - Gu, Xiaofeng
TI - Connectivity, toughness, spanning trees of bounded degree, and the spectrum of regular graphs
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 3
SP - 913
EP - 924
AB - The eigenvalues of graphs are related to many of its combinatorial properties. In his fundamental work, Fiedler showed the close connections between the Laplacian eigenvalues and eigenvectors of a graph and its vertex-connectivity and edge-connectivity. We present some new results describing the connections between the spectrum of a regular graph and other combinatorial parameters such as its generalized connectivity, toughness, and the existence of spanning trees with bounded degree.
LA - eng
KW - spectral graph theory; eigenvalue; connectivity; toughness; spanning $k$-tree
UR - http://eudml.org/doc/286790
ER -
References
top- Alon, N., 10.1023/A:1022453926717, J. Algebr. Comb. 4 (1995), 189-195. (1995) Zbl0826.05039MR1331741DOI10.1023/A:1022453926717
- Bauer, D., Broersma, H. J., Schmeichel, E., 10.1007/s00373-006-0649-0, Graphs Comb. 22 (2006), 1-35. (2006) MR2221006DOI10.1007/s00373-006-0649-0
- Bondy, J. A., Murty, U. S. R., 10.1007/978-1-84628-970-5_1, Graduate Texts in Mathematics 244 Springer, Berlin (2008). (2008) Zbl1134.05001MR2368647DOI10.1007/978-1-84628-970-5_1
- Brouwer, A. E., Spectrum and connectivity of graphs, CWI Quarterly 9 (1996), 37-40. (1996) Zbl0872.05034MR1420014
- Brouwer, A. E., Toughness and spectrum of a graph, Linear Algebra Appl. 226/228 (1995), 267-271. (1995) Zbl0833.05048MR1344566
- Brouwer, A. E., Haemers, W. H., Spectra of Graphs, Universitext Springer, Berlin (2012). (2012) Zbl1231.05001MR2882891
- Butler, S., Chung, F., 10.1007/s00026-009-0039-4, Ann. Comb. 13 (2010), 403-412. (2010) Zbl1229.05193MR2581094DOI10.1007/s00026-009-0039-4
- Chartrand, G., Kapoor, S. F., Lesniak, L., Lick, D. R., Generalized connectivity in graphs, Bull. Bombay Math. Colloq. 2 (1984), 1-6. (1984)
- Chvátal, V., 10.1016/0012-365X(73)90138-6, Discrete Math. 5 (1973), 215-228. (1973) Zbl0256.05122MR0316301DOI10.1016/0012-365X(73)90138-6
- Cioabă, S. M., 10.1016/j.laa.2009.08.029, Linear Algebra Appl. 432 (2010), 458-470. (2010) Zbl1211.05071MR2566492DOI10.1016/j.laa.2009.08.029
- Cioabă, S. M., Gregory, D. A., Haemers, W. H., 10.1016/j.jctb.2008.06.008, J. Comb. Theory, Ser. B 99 (2009), 287-297. (2009) Zbl1205.05177MR2482948DOI10.1016/j.jctb.2008.06.008
- Cioabă, S. M., Wong, W., 10.1016/j.dam.2013.12.004, Discrete Appl. Math. 176 (2014), 43-52. (2014) Zbl1298.05200MR3240840DOI10.1016/j.dam.2013.12.004
- Cioabă, S. M., Wong, W., 10.1016/j.laa.2012.03.013, Linear Algebra Appl. 437 (2012), 630-647. (2012) Zbl1242.05056MR2921723DOI10.1016/j.laa.2012.03.013
- Day, D. P., Oellermann, O. R., Swart, H. C., Bounds on the size of graphs of given order and -connectivity, Discrete Math. 197/198 (1999), 217-223. (1999) Zbl0927.05051MR1674864
- Ellingham, M. N., Zha, X., 10.1002/(SICI)1097-0118(200003)33:3<125::AID-JGT1>3.0.CO;2-X, J. Graph Theory 33 (2000), 125-137. (2000) Zbl0951.05068MR1740929DOI10.1002/(SICI)1097-0118(200003)33:3<125::AID-JGT1>3.0.CO;2-X
- Fiedler, M., A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory, Czech. Math. J. 25 (1975), 619-633. (1975) Zbl0437.15004MR0387321
- Fiedler, M., Algebraic connectivity of graphs, Czech. Math. J. 23 (1973), 298-305. (1973) Zbl0265.05119MR0318007
- Godsil, C., Royle, G., Algebraic Graph Theory, Graduate Texts in Mathematics 207 Springer, New York (2001). (2001) Zbl0968.05002MR1829620
- Gu, X., Spectral conditions for edge connectivity and packing spanning trees in multigraphs, Linear Algebra Appl. 493 (2016), 82-90. (2016) Zbl1329.05189MR3452727
- Gu, X., 10.1016/j.ejc.2014.05.007, Eur. J. Comb. 42 (2014), 15-25. (2014) Zbl1297.05146MR3240134DOI10.1016/j.ejc.2014.05.007
- Gu, X., Connectivity and Spanning Trees of Graphs, PhD Dissertation, West Virginia University (2013). (2013) MR3211328
- Gu, X., Lai, H.-J., Li, P., Yao, S., 10.1002/jgt.21857, J. Graph Theory 81 (2016), 16-29. (2016) MR3431289DOI10.1002/jgt.21857
- Gu, X., Lai, H.-J., Yao, S., 10.1016/j.ipl.2011.09.012, Inf. Process. Lett. 111 (2011), 1124-1129. (2011) Zbl1260.05087MR2893946DOI10.1016/j.ipl.2011.09.012
- Krivelevich, M., Sudakov, B., Pseudo-random graphs, More Sets, Graphs and Numbers 199-262 E. Győri Bolyai Soc. Math. Stud. 15 Springer, Berlin (2006). (2006) Zbl1098.05075MR2223394
- Krivelevich, M., Sudakov, B., 10.1002/jgt.10065, J. Graph Theory 42 (2003), 17-33. (2003) Zbl1028.05059MR1943104DOI10.1002/jgt.10065
- Li, G., Shi, L., 10.1016/j.laa.2013.08.041, Linear Algebra Appl. 439 (2013), 2784-2789. (2013) Zbl1282.05128MR3116390DOI10.1016/j.laa.2013.08.041
- Liu, B., Chen, S., 10.1007/s10587-010-0073-8, Czech. Math. J. 60 (2010), 1079-1089. (2010) Zbl1224.05307MR2738970DOI10.1007/s10587-010-0073-8
- Liu, Q., Hong, Y., Gu, X., Lai, H.-J., Note on edge-disjoint spanning trees and eigenvalues, Linear Algebra Appl. 458 (2014), 128-133. (2014) Zbl1295.05146MR3231810
- Liu, Q., Hong, Y., Lai, H.-J., Edge-disjoint spanning trees and eigenvalues, Linear Algebra Appl. 444 (2014), 146-151. (2014) Zbl1295.05146MR3145835
- Lu, H., 10.1002/jgt.20581, J. Graph Theory 69 (2012), 349-355. (2012) Zbl1243.05153MR2979293DOI10.1002/jgt.20581
- Lu, H., Regular factors of regular graphs from eigenvalues, Electron. J. Comb. 17 (2010), Research paper 159, 12 pages. (2010) Zbl1204.05057MR2745712
- Oellermann, O. R., 10.1007/BF01788551, Graphs Comb. 3 (1987), 285-291. (1987) MR0903618DOI10.1007/BF01788551
- Ozeki, K., Yamashita, T., 10.1007/s00373-010-0973-2, Graphs Comb. 27 (2011), 1-26. (2011) Zbl1232.05055MR2746831DOI10.1007/s00373-010-0973-2
- Win, S., 10.1007/BF01788671, Graphs Comb. 5 (1989), 201-205. (1989) Zbl0673.05054MR0998275DOI10.1007/BF01788671
- Wong, W., Spanning Trees, Toughness, and Eigenvalues of Regular Graphs, PhD Dissertation, University of Delaware (2013), available at http://pqdtopen.proquest.com/doc/1443835286.html?FMT=ABS. (2013) MR3192853
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.