Algebraic conditions for t -tough graphs

Bo Lian Liu; Siyuan Chen

Czechoslovak Mathematical Journal (2010)

  • Volume: 60, Issue: 4, page 1079-1089
  • ISSN: 0011-4642

Abstract

top
We give some algebraic conditions for t -tough graphs in terms of the Laplacian eigenvalues and adjacency eigenvalues of graphs.

How to cite

top

Liu, Bo Lian, and Chen, Siyuan. "Algebraic conditions for $t$-tough graphs." Czechoslovak Mathematical Journal 60.4 (2010): 1079-1089. <http://eudml.org/doc/196588>.

@article{Liu2010,
abstract = {We give some algebraic conditions for $t$-tough graphs in terms of the Laplacian eigenvalues and adjacency eigenvalues of graphs.},
author = {Liu, Bo Lian, Chen, Siyuan},
journal = {Czechoslovak Mathematical Journal},
keywords = {$t$-tough graph; Laplacian matrix; adjacent matrix; eigenvalues; -tough graph; Laplacian matrix; adjacent matrix; eigenvalue},
language = {eng},
number = {4},
pages = {1079-1089},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Algebraic conditions for $t$-tough graphs},
url = {http://eudml.org/doc/196588},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Liu, Bo Lian
AU - Chen, Siyuan
TI - Algebraic conditions for $t$-tough graphs
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 4
SP - 1079
EP - 1089
AB - We give some algebraic conditions for $t$-tough graphs in terms of the Laplacian eigenvalues and adjacency eigenvalues of graphs.
LA - eng
KW - $t$-tough graph; Laplacian matrix; adjacent matrix; eigenvalues; -tough graph; Laplacian matrix; adjacent matrix; eigenvalue
UR - http://eudml.org/doc/196588
ER -

References

top
  1. Brouwer, A. E., Toughness and spectrum of a graph, Linear Algebra Appl. 226-228 (1995), 267-271. (1995) Zbl0833.05048MR1344566
  2. Brouwer, A. E., Haemers, W. H., Eigenvalues and perfect matchings, Linear Algebra Appl. 395 (2005), 155-162. (2005) Zbl1056.05097MR2112881
  3. Chvátal, V., New directions in Hamiltonian graph theory in New Directions in the Theory of Graphs, F. Harary Academic Press, New York (1973), 65-95. (1973) MR0357221
  4. Chvátal, V., 10.1016/j.disc.2006.03.011, Discrete Math. 306 (2006), 910-917. (2006) MR0316301DOI10.1016/j.disc.2006.03.011
  5. Enomoto, H., Jackson, B., Katerinis, P., 10.1002/jgt.3190090106, Journal of Graph Theory 9 (1985), 87-95. (1985) Zbl0598.05054MR0785651DOI10.1002/jgt.3190090106
  6. Haemers, W. H., Interlacing eigenvalues and graphs, Linear Algebra Appl. 226-228 (1995), 593-616. (1995) Zbl0831.05044MR1344588
  7. Jung, H. A., Note on Hamiltonian graphs, in Recent Advances in Graph Theory, M. Fiedler Academia, Prague (1975), 315-321. (1975) MR0392692
  8. Mohar, B., 10.1016/0166-218X(92)90230-8, Discrete Appl. Math. 36 (1992), 169-177. (1992) Zbl0765.05071MR1165833DOI10.1016/0166-218X(92)90230-8
  9. Heuvel, J. Vanden, Hamilton cycles and eigenvalues of graphs, Linear Algebra Appl. 226-228 (1995), 723-730. (1995) MR1344594

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.