Rational realization of the minimum ranks of nonnegative sign pattern matrices
Wei Fang; Wei Gao; Yubin Gao; Fei Gong; Guangming Jing; Zhongshan Li; Yan Ling Shao; Lihua Zhang
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 3, page 895-911
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topFang, Wei, et al. "Rational realization of the minimum ranks of nonnegative sign pattern matrices." Czechoslovak Mathematical Journal 66.3 (2016): 895-911. <http://eudml.org/doc/286800>.
@article{Fang2016,
abstract = {A sign pattern matrix (or nonnegative sign pattern matrix) is a matrix whose entries are from the set $\lbrace +, -, 0\rbrace $ ($ \lbrace +, 0 \rbrace $, respectively). The minimum rank (or rational minimum rank) of a sign pattern matrix $\mathcal \{A\}$ is the minimum of the ranks of the matrices (rational matrices, respectively) whose entries have signs equal to the corresponding entries of $\mathcal \{A\}$. Using a correspondence between sign patterns with minimum rank $r\ge 2$ and point-hyperplane configurations in $\mathbb \{R\}^\{r-1\}$ and Steinitz’s theorem on the rational realizability of 3-polytopes, it is shown that for every nonnegative sign pattern of minimum rank at most 4, the minimum rank and the rational minimum rank are equal. But there are nonnegative sign patterns with minimum rank 5 whose rational minimum rank is greater than 5. It is established that every $d$-polytope determines a nonnegative sign pattern with minimum rank $d+1$ that has a $(d+1)\times (d+1)$ triangular submatrix with all diagonal entries positive. It is also shown that there are at most $\min \lbrace 3m, 3n \rbrace $ zero entries in any condensed nonnegative $m \times n$ sign pattern of minimum rank 3. Some bounds on the entries of some integer matrices achieving the minimum ranks of nonnegative sign patterns with minimum rank 3 or 4 are established.},
author = {Fang, Wei, Gao, Wei, Gao, Yubin, Gong, Fei, Jing, Guangming, Li, Zhongshan, Shao, Yan Ling, Zhang, Lihua},
journal = {Czechoslovak Mathematical Journal},
keywords = {sign pattern (matrix); nonnegative sign pattern; minimum rank; convex polytope; rational minimum rank; rational realization; integer matrix; condensed sign pattern; point-hyperplane configuration},
language = {eng},
number = {3},
pages = {895-911},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Rational realization of the minimum ranks of nonnegative sign pattern matrices},
url = {http://eudml.org/doc/286800},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Fang, Wei
AU - Gao, Wei
AU - Gao, Yubin
AU - Gong, Fei
AU - Jing, Guangming
AU - Li, Zhongshan
AU - Shao, Yan Ling
AU - Zhang, Lihua
TI - Rational realization of the minimum ranks of nonnegative sign pattern matrices
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 3
SP - 895
EP - 911
AB - A sign pattern matrix (or nonnegative sign pattern matrix) is a matrix whose entries are from the set $\lbrace +, -, 0\rbrace $ ($ \lbrace +, 0 \rbrace $, respectively). The minimum rank (or rational minimum rank) of a sign pattern matrix $\mathcal {A}$ is the minimum of the ranks of the matrices (rational matrices, respectively) whose entries have signs equal to the corresponding entries of $\mathcal {A}$. Using a correspondence between sign patterns with minimum rank $r\ge 2$ and point-hyperplane configurations in $\mathbb {R}^{r-1}$ and Steinitz’s theorem on the rational realizability of 3-polytopes, it is shown that for every nonnegative sign pattern of minimum rank at most 4, the minimum rank and the rational minimum rank are equal. But there are nonnegative sign patterns with minimum rank 5 whose rational minimum rank is greater than 5. It is established that every $d$-polytope determines a nonnegative sign pattern with minimum rank $d+1$ that has a $(d+1)\times (d+1)$ triangular submatrix with all diagonal entries positive. It is also shown that there are at most $\min \lbrace 3m, 3n \rbrace $ zero entries in any condensed nonnegative $m \times n$ sign pattern of minimum rank 3. Some bounds on the entries of some integer matrices achieving the minimum ranks of nonnegative sign patterns with minimum rank 3 or 4 are established.
LA - eng
KW - sign pattern (matrix); nonnegative sign pattern; minimum rank; convex polytope; rational minimum rank; rational realization; integer matrix; condensed sign pattern; point-hyperplane configuration
UR - http://eudml.org/doc/286800
ER -
References
top- Alon, N., Frankl, P., Rödl, V., Geometric realization of set systems and probabilistic communication complexity, Proc. 26th Annual Symp. on Foundations of Computer Science IEEE Computer Society, Portland (1985),272-280. (1985)
- Arav, M., Hall, F., Koyuncu, S., Li, Z., Rao, B., Rational realizations of the minimum rank of a sign pattern matrix, Linear Algebra Appl. 409 (2005), 111-125. (2005) MR2170271
- Arav, M., Hall, F., Li, Z., Merid, A., Gao, Y., Sign patterns that require almost unique rank, Linear Algebra Appl. 430 (2009), 7-16. (2009) Zbl1157.15020MR2460493
- Arav, M., Hall, F., Li, Z., Rao, B., Rational solutions of certain matrix equations, Linear Algebra Appl. 430 (2009), 660-663. (2009) Zbl1166.15005MR2469319
- Arav, M., Hall, F., Li, Z., Holst, H. van der, Sinkovic, J. H., Zhang, L., 10.13001/1081-3810.3077, Electron. J. Linear Algebra 30 (2015), 360-371. (2015) MR3386529DOI10.13001/1081-3810.3077
- Berman, A., Friedland, S., Hogben, L., Rothblum, U. G., Shader, B., Minimum rank of matrices described by a graph or pattern over the rational, real and complex numbers, Electron. J. Comb. 15 (2008), 1-19. (2008) Zbl1179.05070MR2383445
- Brualdi, R., Fallat, S., Hogben, L., Shader, B., Driessche, P. van den, Final Report: Workshop on Theory and Applications of Matrices described by Patterns, Banff International Research Station (2010),20 pages. (2010)
- Brualdi, R. A., Shader, B. L., Matrices of Sign-Solvable Linear Systems, Cambridge Tracts in Mathematics 116 Cambridge University Press, Cambridge (1995). (1995) Zbl0833.15002MR1358133
- Chen, G., Hall, F. J., Li, Z., Wei, B., 10.1007/s00373-002-0522-8, Graphs Comb. 19 (2003), 323-334. (2003) Zbl1023.05093MR2007894DOI10.1007/s00373-002-0522-8
- Delsarte, P., Kamp, Y., 10.1137/0402006, SIAM J. Discrete Math. 2 (1989), 51-63. (1989) Zbl0677.15007MR0976788DOI10.1137/0402006
- Fang, W., Gao, W., Gao, Y., Gong, F., Jing, G., Li, Z., Shao, Y., Zhang, L., Minimum ranks of sign patterns and zero-nonzero patterns and point-hyperplane configurations, Submitted to Linear Algebra Appl.
- Fiedler, M., Gao, W., Hall, F. J., Jing, G., Li, Z., Stroev, M., Ranks of dense alternating sign matrices and their sign patterns, Linear Algebra Appl. 471 (2015), 109-121. (2015) Zbl1310.15057MR3314328
- Forster, J., 10.1016/S0022-0000(02)00019-3, J. Comput. Syst. Sci. 65 (2002), 612-625. (2002) Zbl1058.68058MR1964645DOI10.1016/S0022-0000(02)00019-3
- Forster, J., Schmitt, N., Simon, H. U., Suttorp, T., 10.1023/A:1022905618164, Mach. Learn. 51 (2003), 263-281. (2003) Zbl1026.68112MR2042049DOI10.1023/A:1022905618164
- Friesen, M., Hamed, A., Lee, T., Theis, D. O., Fooling-sets and rank, Eur. J. Comb. (2015), 143-153. (2015) Zbl1314.05028MR3339019
- Graham, R. L., Grötschel, M., Lovász, L., eds., Handbook of Combinatorics, MIT Press, Cambridge (1995). (1995)
- Hall, F. J., Li, Z., Sign Pattern Matrices, Handbook of Linear Algebra L. Hogben Discrete Mathematics and Its Applications Chapman & Hall/CRC, Boca Raton (2014). (2014)
- Hershkowitz, D., Schneider, H., 10.1080/03081089308818204, Linear Multilinear Algebra 34 (1993), 3-19. (1993) Zbl0793.05027MR1334927DOI10.1080/03081089308818204
- Johnson, C. R., 10.1080/03081088208817476, Linear Multilinear Algebra 12 (1982), 99-108. (1982) Zbl0494.15002MR0670716DOI10.1080/03081088208817476
- Johnson, C. R., Zhang, Y., 10.1142/S1793830910000711, Discrete Math. Algorithms Appl. 2 (2010), 363-377. (2010) Zbl1210.15002MR2728832DOI10.1142/S1793830910000711
- Kopparty, S., Rao, K. P. S. B., The minimum rank problem: a counterexample, Linear Algebra Appl. 428 (2008), 1761-1765. (2008) Zbl1151.15002MR2388655
- Li, Z., Gao, Y., Arav, M., Gong, F., Gao, W., Hall, F. J., Holst, H. van der, 10.1080/03081087.2012.716431, Linear Multilinear Algebra 61 (2013), 895-908. (2013) MR3175334DOI10.1080/03081087.2012.716431
- Matoušek, J., Lectures on Discrete Geometry, Graduate Texts in Mathematics 212 Springer, New York (2002). (2002) Zbl0999.52006MR1899299
- Paturi, R., Simon, J., 10.1016/0022-0000(86)90046-2, J. Comput. Syst. Sci. 33 (1986), 106-123. (1986) Zbl0625.68029MR0864082DOI10.1016/0022-0000(86)90046-2
- Razborov, A. A., Sherstov, A. A., 10.1137/080744037, SIAM J. Comput. 39 (2010), 1833-1855. (2010) Zbl1211.68213MR2592035DOI10.1137/080744037
- Mor, A. Ribó, Rote, G., Schulz, A., 10.1007/s00454-010-9301-0, Discrete Comput. Geom. 45 (2011), 65-87. (2011) MR2765520DOI10.1007/s00454-010-9301-0
- Shitov, Y., 10.1016/j.ejc.2014.06.001, Eur. J. Comb. 42 (2014), 107-111. (2014) Zbl1314.15022MR3240139DOI10.1016/j.ejc.2014.06.001
- Ziegler, G. M., Lectures on Polytopes, Graduate Texts in Mathematics 152 Springer, Berlin (1995). (1995) Zbl0823.52002MR1311028
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.