Local convergence of a one parameter fourth-order Jarratt-type method in Banach spaces
I. K. Argyros; D. González; S. K. Khattri
Commentationes Mathematicae Universitatis Carolinae (2016)
- Volume: 57, Issue: 3, page 289-300
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topArgyros, I. K., González, D., and Khattri, S. K.. "Local convergence of a one parameter fourth-order Jarratt-type method in Banach spaces." Commentationes Mathematicae Universitatis Carolinae 57.3 (2016): 289-300. <http://eudml.org/doc/286813>.
@article{Argyros2016,
abstract = {We present a local convergence analysis of a one parameter Jarratt-type method. We use this method to approximate a solution of an equation in a Banach space setting. The semilocal convergence of this method was recently carried out in earlier studies under stronger hypotheses. Numerical examples are given where earlier results such as in [Ezquerro J.A., Hernández M.A., New iterations of $R$-order four with reduced computational cost, BIT Numer. Math. 49 (2009), 325–342] cannot be used to solve equations but our results can be applied.},
author = {Argyros, I. K., González, D., Khattri, S. K.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Banach space; Newton's method; local convergence; radius of convergence},
language = {eng},
number = {3},
pages = {289-300},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Local convergence of a one parameter fourth-order Jarratt-type method in Banach spaces},
url = {http://eudml.org/doc/286813},
volume = {57},
year = {2016},
}
TY - JOUR
AU - Argyros, I. K.
AU - González, D.
AU - Khattri, S. K.
TI - Local convergence of a one parameter fourth-order Jarratt-type method in Banach spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2016
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 57
IS - 3
SP - 289
EP - 300
AB - We present a local convergence analysis of a one parameter Jarratt-type method. We use this method to approximate a solution of an equation in a Banach space setting. The semilocal convergence of this method was recently carried out in earlier studies under stronger hypotheses. Numerical examples are given where earlier results such as in [Ezquerro J.A., Hernández M.A., New iterations of $R$-order four with reduced computational cost, BIT Numer. Math. 49 (2009), 325–342] cannot be used to solve equations but our results can be applied.
LA - eng
KW - Banach space; Newton's method; local convergence; radius of convergence
UR - http://eudml.org/doc/286813
ER -
References
top- Amat S., Busquier S., Negra M., 10.1081/NFA-200042628, Numer. Funct. Anal. Optim. 25 (2004), 397–405. Zbl1071.65077MR2106266DOI10.1081/NFA-200042628
- Argyros I.K., Computational Theory of Iterative Methods, Studies in Computational Mathematics, 15, C.K. Chui and L. Wuytack (Eds.), Elsevier Publ. Co., New York, 2007. Zbl1147.65313MR2356038
- Argyros I.K., 10.1090/S0025-5718-2010-02398-1, Math. Comput. 80 (2011), 327–343. Zbl1211.65057MR2728982DOI10.1090/S0025-5718-2010-02398-1
- Argyros I.K., Hilout S., 10.1016/j.jco.2011.12.003, J. Complexity 28 (2012), 364–387. Zbl1245.65058MR2914733DOI10.1016/j.jco.2011.12.003
- Argyros I.K., Hilout S., 10.1007/s11075-012-9570-1, Numer. Algorithms 62 (2013), 115–132. Zbl1259.65080MR3009558DOI10.1007/s11075-012-9570-1
- Argyros I.K., Hilout S., Computational methods in nonlinear analysis, Efficient algorithms, fixed point theory and applications, World Scientific, Hackensack, NJ, 2013. Zbl1279.65062MR3134688
- Candella V., Marquina A., 10.1007/BF02238803, Computing 45 (1990), 355–367. MR1088077DOI10.1007/BF02238803
- Candella V., Marquina A., 10.1007/BF02241866, Computing 44 (1990), 169–184. MR1053497DOI10.1007/BF02241866
- Cătinaş E., 10.1090/S0025-5718-04-01646-1, Math. Comp. 74 (2005), 291–301. Zbl1054.65050MR2085412DOI10.1090/S0025-5718-04-01646-1
- Chun C., Stănică P., Neta B., 10.1016/j.camwa.2011.01.034, Comput. Math. Appl. 61 (2011), 1665–1675. Zbl1217.65101MR2775931DOI10.1016/j.camwa.2011.01.034
- Ezquerro J.A., Hernández M.A., 10.1007/s10543-009-0226-z, BIT Numer. Math. 49 (2009), 325–342. Zbl1170.65038MR2507604DOI10.1007/s10543-009-0226-z
- Gutiérrez J.M., Hernández M.A., 10.1016/S0377-0427(97)00076-9, J. Comput. Math. Appl. 82 (1997), 171–183. Zbl0891.65064DOI10.1016/S0377-0427(97)00076-9
- Hernández M.A., Salanova M.A., Sufficient condition for semilocal convergence of a fourth order multipoint iterative method for solving equations in Banach spaces, Southwest J. Pure Appl. Math. 1999, no. 1, 29–40. MR1717585
- Jarratt P., 10.1090/S0025-5718-66-99924-8, Math. Comput. 20 (1996), 434–437. Zbl0229.65049DOI10.1090/S0025-5718-66-99924-8
- Kantorovich L.V., Akilov G.P., Functional Analysis, Pergamon Press, Oxford, 1982. Zbl0555.46001MR0664597
- Kou J.-S., Li Y.-T., Wang X.-H., 10.1016/j.amc.2006.01.076, Appl. Math. Comput. 181 (2006), 1106–1111. MR2269989DOI10.1016/j.amc.2006.01.076
- Ortega L.M., Rheinboldt W.C., Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970. Zbl0949.65053MR0273810
- Parida P.K., Gupta D.K., 10.1016/j.cam.2006.08.027, J. Comput. Appl. Math. 206 (2007), 873–887. Zbl1119.47063MR2333719DOI10.1016/j.cam.2006.08.027
- Potra F.A., Pták V., Nondiscrete Induction and Iterative Processes, Research Notes in Mathematics, 103, Pitman, Boston, 1984. Zbl0549.41001MR0754338
- Proinov P.D., 10.1016/j.jco.2008.05.006, J. Complexity 25 (2009), 38–62. Zbl1158.65040MR2475307DOI10.1016/j.jco.2008.05.006
- Rheinboldt W.C., 10.4064/-3-1-129-142, Banach Center Publ., 3, PWN, Warsaw, 1978, pp. 129–142. Zbl0378.65029MR0514377DOI10.4064/-3-1-129-142
- Traub J.F., Iterative Methods for the Solution of Equations, AMS Chelsea Publishing, 1982. Zbl0672.65025
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.