Local convergence of a one parameter fourth-order Jarratt-type method in Banach spaces

I. K. Argyros; D. González; S. K. Khattri

Commentationes Mathematicae Universitatis Carolinae (2016)

  • Volume: 57, Issue: 3, page 289-300
  • ISSN: 0010-2628

Abstract

top
We present a local convergence analysis of a one parameter Jarratt-type method. We use this method to approximate a solution of an equation in a Banach space setting. The semilocal convergence of this method was recently carried out in earlier studies under stronger hypotheses. Numerical examples are given where earlier results such as in [Ezquerro J.A., Hernández M.A., New iterations of R -order four with reduced computational cost, BIT Numer. Math. 49 (2009), 325–342] cannot be used to solve equations but our results can be applied.

How to cite

top

Argyros, I. K., González, D., and Khattri, S. K.. "Local convergence of a one parameter fourth-order Jarratt-type method in Banach spaces." Commentationes Mathematicae Universitatis Carolinae 57.3 (2016): 289-300. <http://eudml.org/doc/286813>.

@article{Argyros2016,
abstract = {We present a local convergence analysis of a one parameter Jarratt-type method. We use this method to approximate a solution of an equation in a Banach space setting. The semilocal convergence of this method was recently carried out in earlier studies under stronger hypotheses. Numerical examples are given where earlier results such as in [Ezquerro J.A., Hernández M.A., New iterations of $R$-order four with reduced computational cost, BIT Numer. Math. 49 (2009), 325–342] cannot be used to solve equations but our results can be applied.},
author = {Argyros, I. K., González, D., Khattri, S. K.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Banach space; Newton's method; local convergence; radius of convergence},
language = {eng},
number = {3},
pages = {289-300},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Local convergence of a one parameter fourth-order Jarratt-type method in Banach spaces},
url = {http://eudml.org/doc/286813},
volume = {57},
year = {2016},
}

TY - JOUR
AU - Argyros, I. K.
AU - González, D.
AU - Khattri, S. K.
TI - Local convergence of a one parameter fourth-order Jarratt-type method in Banach spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2016
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 57
IS - 3
SP - 289
EP - 300
AB - We present a local convergence analysis of a one parameter Jarratt-type method. We use this method to approximate a solution of an equation in a Banach space setting. The semilocal convergence of this method was recently carried out in earlier studies under stronger hypotheses. Numerical examples are given where earlier results such as in [Ezquerro J.A., Hernández M.A., New iterations of $R$-order four with reduced computational cost, BIT Numer. Math. 49 (2009), 325–342] cannot be used to solve equations but our results can be applied.
LA - eng
KW - Banach space; Newton's method; local convergence; radius of convergence
UR - http://eudml.org/doc/286813
ER -

References

top
  1. Amat S., Busquier S., Negra M., 10.1081/NFA-200042628, Numer. Funct. Anal. Optim. 25 (2004), 397–405. Zbl1071.65077MR2106266DOI10.1081/NFA-200042628
  2. Argyros I.K., Computational Theory of Iterative Methods, Studies in Computational Mathematics, 15, C.K. Chui and L. Wuytack (Eds.), Elsevier Publ. Co., New York, 2007. Zbl1147.65313MR2356038
  3. Argyros I.K., 10.1090/S0025-5718-2010-02398-1, Math. Comput. 80 (2011), 327–343. Zbl1211.65057MR2728982DOI10.1090/S0025-5718-2010-02398-1
  4. Argyros I.K., Hilout S., 10.1016/j.jco.2011.12.003, J. Complexity 28 (2012), 364–387. Zbl1245.65058MR2914733DOI10.1016/j.jco.2011.12.003
  5. Argyros I.K., Hilout S., 10.1007/s11075-012-9570-1, Numer. Algorithms 62 (2013), 115–132. Zbl1259.65080MR3009558DOI10.1007/s11075-012-9570-1
  6. Argyros I.K., Hilout S., Computational methods in nonlinear analysis, Efficient algorithms, fixed point theory and applications, World Scientific, Hackensack, NJ, 2013. Zbl1279.65062MR3134688
  7. Candella V., Marquina A., 10.1007/BF02238803, Computing 45 (1990), 355–367. MR1088077DOI10.1007/BF02238803
  8. Candella V., Marquina A., 10.1007/BF02241866, Computing 44 (1990), 169–184. MR1053497DOI10.1007/BF02241866
  9. Cătinaş E., 10.1090/S0025-5718-04-01646-1, Math. Comp. 74 (2005), 291–301. Zbl1054.65050MR2085412DOI10.1090/S0025-5718-04-01646-1
  10. Chun C., Stănică P., Neta B., 10.1016/j.camwa.2011.01.034, Comput. Math. Appl. 61 (2011), 1665–1675. Zbl1217.65101MR2775931DOI10.1016/j.camwa.2011.01.034
  11. Ezquerro J.A., Hernández M.A., 10.1007/s10543-009-0226-z, BIT Numer. Math. 49 (2009), 325–342. Zbl1170.65038MR2507604DOI10.1007/s10543-009-0226-z
  12. Gutiérrez J.M., Hernández M.A., 10.1016/S0377-0427(97)00076-9, J. Comput. Math. Appl. 82 (1997), 171–183. Zbl0891.65064DOI10.1016/S0377-0427(97)00076-9
  13. Hernández M.A., Salanova M.A., Sufficient condition for semilocal convergence of a fourth order multipoint iterative method for solving equations in Banach spaces, Southwest J. Pure Appl. Math. 1999, no. 1, 29–40. MR1717585
  14. Jarratt P., 10.1090/S0025-5718-66-99924-8, Math. Comput. 20 (1996), 434–437. Zbl0229.65049DOI10.1090/S0025-5718-66-99924-8
  15. Kantorovich L.V., Akilov G.P., Functional Analysis, Pergamon Press, Oxford, 1982. Zbl0555.46001MR0664597
  16. Kou J.-S., Li Y.-T., Wang X.-H., 10.1016/j.amc.2006.01.076, Appl. Math. Comput. 181 (2006), 1106–1111. MR2269989DOI10.1016/j.amc.2006.01.076
  17. Ortega L.M., Rheinboldt W.C., Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970. Zbl0949.65053MR0273810
  18. Parida P.K., Gupta D.K., 10.1016/j.cam.2006.08.027, J. Comput. Appl. Math. 206 (2007), 873–887. Zbl1119.47063MR2333719DOI10.1016/j.cam.2006.08.027
  19. Potra F.A., Pták V., Nondiscrete Induction and Iterative Processes, Research Notes in Mathematics, 103, Pitman, Boston, 1984. Zbl0549.41001MR0754338
  20. Proinov P.D., 10.1016/j.jco.2008.05.006, J. Complexity 25 (2009), 38–62. Zbl1158.65040MR2475307DOI10.1016/j.jco.2008.05.006
  21. Rheinboldt W.C., 10.4064/-3-1-129-142, Banach Center Publ., 3, PWN, Warsaw, 1978, pp. 129–142. Zbl0378.65029MR0514377DOI10.4064/-3-1-129-142
  22. Traub J.F., Iterative Methods for the Solution of Equations, AMS Chelsea Publishing, 1982. Zbl0672.65025

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.