Page 1 Next

Displaying 1 – 20 of 24

Showing per page

A brief review of some application driven fast algorithms for elliptic partial differential equations

Prabir Daripa (2012)

Open Mathematics

Some application driven fast algorithms developed by the author and his collaborators for elliptic partial differential equations are briefly reviewed here. Subsequent use of the ideas behind development of these algorithms for further development of other algorithms some of which are currently in progress is briefly mentioned. Serial and parallel implementation of these algorithms and their applications to some pure and applied problems are also briefly reviewed.

A Static condensation Reduced Basis Element method : approximation and a posteriori error estimation

Dinh Bao Phuong Huynh, David J. Knezevic, Anthony T. Patera (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We propose a new reduced basis element-cum-component mode synthesis approach for parametrized elliptic coercive partial differential equations. In the Offline stage we construct a Library of interoperable parametrized reference components relevant to some family of problems; in the Online stage we instantiate and connect reference components (at ports) to rapidly form and query parametric systems. The method is based on static condensation at the interdomain level, a conforming eigenfunction “port”...

An algebraic addition-theorem for Weierstrass' elliptic function and nomograms

Akira Matsuda (1979)

Aplikace matematiky

A dual transformation is discussed, by which a concurrent chart represented by one equation is transformed into an alignment chart or into a tangential contact chart. Using this transformation an alignment chart where three scales coincide and a tangential contact chart consisting of a family of circles, which represent the relation u + v + w = 0 , are constructed. In this case, a form of the addition-theorem for Weierstrass’ function involving no derivative is used.

How to increase convergence order of the Newton method to 2 × m ?

Sanjay Kumar Khattri (2014)

Applications of Mathematics

We present a simple and effective scheme for forming iterative methods of various convergence orders. In this scheme, methods of various convergence orders, such as four, six, eight and ten, are formed through a modest modification of the classical Newton method. Since the scheme considered is a simple modification of the Newton method, it can be easily implemented in existing software packages, which is also suggested by the presented pseudocodes. Finally some problems are solved, to very high...

Local convergence analysis of a modified Newton-Jarratt's composition under weak conditions

Ioannis K. Argyros, Santhosh George (2019)

Commentationes Mathematicae Universitatis Carolinae

A. Cordero et. al (2010) considered a modified Newton-Jarratt's composition to solve nonlinear equations. In this study, using decomposition technique under weaker assumptions we extend the applicability of this method. Numerical examples where earlier results cannot apply to solve equations but our results can apply are also given in this study.

Local convergence of a one parameter fourth-order Jarratt-type method in Banach spaces

I. K. Argyros, D. González, S. K. Khattri (2016)

Commentationes Mathematicae Universitatis Carolinae

We present a local convergence analysis of a one parameter Jarratt-type method. We use this method to approximate a solution of an equation in a Banach space setting. The semilocal convergence of this method was recently carried out in earlier studies under stronger hypotheses. Numerical examples are given where earlier results such as in [Ezquerro J.A., Hernández M.A., New iterations of R -order four with reduced computational cost, BIT Numer. Math. 49 (2009), 325–342] cannot be used to solve equations...

On an iterative method for unconstrained optimization

Ioannis K. Argyros (2015)

Applicationes Mathematicae

We present a local and a semi-local convergence analysis of an iterative method for approximating zeros of derivatives for solving univariate and unconstrained optimization problems. In the local case, the radius of convergence is obtained, whereas in the semi-local case, sufficient convergence criteria are presented. Numerical examples are also provided.

Currently displaying 1 – 20 of 24

Page 1 Next