On -extending modules
Commentationes Mathematicae Universitatis Carolinae (2016)
- Volume: 57, Issue: 3, page 279-288
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topTalebi, Y., and Mohammadi, R.. "On $\tau $-extending modules." Commentationes Mathematicae Universitatis Carolinae 57.3 (2016): 279-288. <http://eudml.org/doc/286818>.
@article{Talebi2016,
abstract = {In this paper we introduce the concept of $\tau $-extending modules by $\tau $-rational submodules and study some properties of such modules. It is shown that the set of all $\tau $-rational left ideals of $_RR$ is a Gabriel filter. An $R$-module $M$ is called $\tau $-extending if every submodule of $M$ is $\tau $-rational in a direct summand of $M$. It is proved that $M$ is $\tau $-extending if and only if $M = Rej_ME(R/\tau (R))\oplus N$, such that $N$ is a $\tau $-extending submodule of $M$. An example is given to show that the direct sum of $\tau $-extending modules need not be $\tau $-extending.},
author = {Talebi, Y., Mohammadi, R.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {torsion theory; $\tau $-rational submodules; $\tau $-closed submodules; $\tau $-extending modules},
language = {eng},
number = {3},
pages = {279-288},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On $\tau $-extending modules},
url = {http://eudml.org/doc/286818},
volume = {57},
year = {2016},
}
TY - JOUR
AU - Talebi, Y.
AU - Mohammadi, R.
TI - On $\tau $-extending modules
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2016
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 57
IS - 3
SP - 279
EP - 288
AB - In this paper we introduce the concept of $\tau $-extending modules by $\tau $-rational submodules and study some properties of such modules. It is shown that the set of all $\tau $-rational left ideals of $_RR$ is a Gabriel filter. An $R$-module $M$ is called $\tau $-extending if every submodule of $M$ is $\tau $-rational in a direct summand of $M$. It is proved that $M$ is $\tau $-extending if and only if $M = Rej_ME(R/\tau (R))\oplus N$, such that $N$ is a $\tau $-extending submodule of $M$. An example is given to show that the direct sum of $\tau $-extending modules need not be $\tau $-extending.
LA - eng
KW - torsion theory; $\tau $-rational submodules; $\tau $-closed submodules; $\tau $-extending modules
UR - http://eudml.org/doc/286818
ER -
References
top- Anderson F.W., Fuller K.R., Rings and Categories of Modules, Springer, New York, 1992. Zbl0765.16001MR1245487
- Bland P.E., Topics in Torsion Theory, Wiley-VCH Verlag, Berlin, 1998. Zbl0899.16013MR1640903
- Bican L., Kepka T., Němec P., Rings, Modules, and Preradicals, Marcel Dekker, New York, 1982. Zbl0483.16026MR0655412
- Çeken S., Alkan M., 10.1007/s00009-010-0096-2, Mediterr. J. Math. 9 (2012), 129–142. Zbl1258.16033MR2885489DOI10.1007/s00009-010-0096-2
- Charalambides S., Clark J., 10.1007/s00009-007-0119-9, Mediterr. J. Math. 4 (2007), 291–308. Zbl1130.16002MR2349889DOI10.1007/s00009-007-0119-9
- Clark J., Lomp C., Vanaja N., Wisbauer R., Lifting Modules, Birkhäuser, Basel, 2006. Zbl1102.16001MR2253001
- Crivei S., On -complemented modules, Mathematica (Cluj) 45(68) (2003), no. 2, 127–136. Zbl1084.16505MR2056044
- Dogruöz S., 10.1007/s10587-008-0022-y, Czechoslovak Math. J. 58(133) (2008), 381–393. Zbl1166.16014MR2411096DOI10.1007/s10587-008-0022-y
- Dung N.V., Huynh D.V., Smith P.F., Wisbauer R., Extending Modules, Pitman Research Notes in Mathematics Series, 313, Longman Scientific and Technical, Harlow, 1994. Zbl0841.16001MR1312366
- Gomez Pardo J.L., 10.1080/00927878508823147, Comm. Algebra 13 (1985), no. 1, 21–57. Zbl0552.16009MR0768085DOI10.1080/00927878508823147
- Lam T.Y., A First Course in Noncommutative Rings, Springer, New York, 1990. Zbl0980.16001MR1838439
- Lam T.Y., Lectures on Modules and Rings, Springer, New York, 1998. Zbl0911.16001MR1653294
- Mohamed S.H., Müller B.J., Continuous and Discrete Modules, London Math. Soc. Lecture Notes Series, 147, Cambridge Univ. Press, Cambridge, 1990. Zbl0701.16001MR1084376
- Mohamed S., Müller B., Singh S., 10.1080/00927878408823021, Comm. Algebra 12 (1984), 663–672. Zbl0542.13003MR0735140DOI10.1080/00927878408823021
- Smith P.F., Tercan A., 10.1080/00927879308824655, Comm. Algebra 21 (1993), no. 6, 1809–1847. Zbl0779.16002MR1215548DOI10.1080/00927879308824655
- Smith P.F., Viola-Prioli A.M., Viola-Prioli J.E., 10.1080/00927879708825921, Comm. Algebra 25 (1997), 1307–1326. Zbl0879.16017MR1437673DOI10.1080/00927879708825921
- Stenström B., Rings of Quotients, Springer, Berlin, 1975. MR0389953
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.