On τ -extending modules

Y. Talebi; R. Mohammadi

Commentationes Mathematicae Universitatis Carolinae (2016)

  • Volume: 57, Issue: 3, page 279-288
  • ISSN: 0010-2628

Abstract

top
In this paper we introduce the concept of τ -extending modules by τ -rational submodules and study some properties of such modules. It is shown that the set of all τ -rational left ideals of R R is a Gabriel filter. An R -module M is called τ -extending if every submodule of M is τ -rational in a direct summand of M . It is proved that M is τ -extending if and only if M = R e j M E ( R / τ ( R ) ) N , such that N is a τ -extending submodule of M . An example is given to show that the direct sum of τ -extending modules need not be τ -extending.

How to cite

top

Talebi, Y., and Mohammadi, R.. "On $\tau $-extending modules." Commentationes Mathematicae Universitatis Carolinae 57.3 (2016): 279-288. <http://eudml.org/doc/286818>.

@article{Talebi2016,
abstract = {In this paper we introduce the concept of $\tau $-extending modules by $\tau $-rational submodules and study some properties of such modules. It is shown that the set of all $\tau $-rational left ideals of $_RR$ is a Gabriel filter. An $R$-module $M$ is called $\tau $-extending if every submodule of $M$ is $\tau $-rational in a direct summand of $M$. It is proved that $M$ is $\tau $-extending if and only if $M = Rej_ME(R/\tau (R))\oplus N$, such that $N$ is a $\tau $-extending submodule of $M$. An example is given to show that the direct sum of $\tau $-extending modules need not be $\tau $-extending.},
author = {Talebi, Y., Mohammadi, R.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {torsion theory; $\tau $-rational submodules; $\tau $-closed submodules; $\tau $-extending modules},
language = {eng},
number = {3},
pages = {279-288},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On $\tau $-extending modules},
url = {http://eudml.org/doc/286818},
volume = {57},
year = {2016},
}

TY - JOUR
AU - Talebi, Y.
AU - Mohammadi, R.
TI - On $\tau $-extending modules
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2016
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 57
IS - 3
SP - 279
EP - 288
AB - In this paper we introduce the concept of $\tau $-extending modules by $\tau $-rational submodules and study some properties of such modules. It is shown that the set of all $\tau $-rational left ideals of $_RR$ is a Gabriel filter. An $R$-module $M$ is called $\tau $-extending if every submodule of $M$ is $\tau $-rational in a direct summand of $M$. It is proved that $M$ is $\tau $-extending if and only if $M = Rej_ME(R/\tau (R))\oplus N$, such that $N$ is a $\tau $-extending submodule of $M$. An example is given to show that the direct sum of $\tau $-extending modules need not be $\tau $-extending.
LA - eng
KW - torsion theory; $\tau $-rational submodules; $\tau $-closed submodules; $\tau $-extending modules
UR - http://eudml.org/doc/286818
ER -

References

top
  1. Anderson F.W., Fuller K.R., Rings and Categories of Modules, Springer, New York, 1992. Zbl0765.16001MR1245487
  2. Bland P.E., Topics in Torsion Theory, Wiley-VCH Verlag, Berlin, 1998. Zbl0899.16013MR1640903
  3. Bican L., Kepka T., Němec P., Rings, Modules, and Preradicals, Marcel Dekker, New York, 1982. Zbl0483.16026MR0655412
  4. Çeken S., Alkan M., 10.1007/s00009-010-0096-2, Mediterr. J. Math. 9 (2012), 129–142. Zbl1258.16033MR2885489DOI10.1007/s00009-010-0096-2
  5. Charalambides S., Clark J., 10.1007/s00009-007-0119-9, Mediterr. J. Math. 4 (2007), 291–308. Zbl1130.16002MR2349889DOI10.1007/s00009-007-0119-9
  6. Clark J., Lomp C., Vanaja N., Wisbauer R., Lifting Modules, Birkhäuser, Basel, 2006. Zbl1102.16001MR2253001
  7. Crivei S., On τ -complemented modules, Mathematica (Cluj) 45(68) (2003), no. 2, 127–136. Zbl1084.16505MR2056044
  8. Dogruöz S., 10.1007/s10587-008-0022-y, Czechoslovak Math. J. 58(133) (2008), 381–393. Zbl1166.16014MR2411096DOI10.1007/s10587-008-0022-y
  9. Dung N.V., Huynh D.V., Smith P.F., Wisbauer R., Extending Modules, Pitman Research Notes in Mathematics Series, 313, Longman Scientific and Technical, Harlow, 1994. Zbl0841.16001MR1312366
  10. Gomez Pardo J.L., 10.1080/00927878508823147, Comm. Algebra 13 (1985), no. 1, 21–57. Zbl0552.16009MR0768085DOI10.1080/00927878508823147
  11. Lam T.Y., A First Course in Noncommutative Rings, Springer, New York, 1990. Zbl0980.16001MR1838439
  12. Lam T.Y., Lectures on Modules and Rings, Springer, New York, 1998. Zbl0911.16001MR1653294
  13. Mohamed S.H., Müller B.J., Continuous and Discrete Modules, London Math. Soc. Lecture Notes Series, 147, Cambridge Univ. Press, Cambridge, 1990. Zbl0701.16001MR1084376
  14. Mohamed S., Müller B., Singh S., 10.1080/00927878408823021, Comm. Algebra 12 (1984), 663–672. Zbl0542.13003MR0735140DOI10.1080/00927878408823021
  15. Smith P.F., Tercan A., 10.1080/00927879308824655, Comm. Algebra 21 (1993), no. 6, 1809–1847. Zbl0779.16002MR1215548DOI10.1080/00927879308824655
  16. Smith P.F., Viola-Prioli A.M., Viola-Prioli J.E., 10.1080/00927879708825921, Comm. Algebra 25 (1997), 1307–1326. Zbl0879.16017MR1437673DOI10.1080/00927879708825921
  17. Stenström B., Rings of Quotients, Springer, Berlin, 1975. MR0389953

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.