On skew derivations as homomorphisms or anti-homomorphisms

Mohd Arif Raza; Nadeem ur Rehman; Shuliang Huang

Commentationes Mathematicae Universitatis Carolinae (2016)

  • Volume: 57, Issue: 3, page 271-278
  • ISSN: 0010-2628

Abstract

top
Let R be a prime ring with center Z and I be a nonzero ideal of R . In this manuscript, we investigate the action of skew derivation ( δ , ϕ ) of R which acts as a homomorphism or an anti-homomorphism on I . Moreover, we provide an example for semiprime case.

How to cite

top

Raza, Mohd Arif, Rehman, Nadeem ur, and Huang, Shuliang. "On skew derivations as homomorphisms or anti-homomorphisms." Commentationes Mathematicae Universitatis Carolinae 57.3 (2016): 271-278. <http://eudml.org/doc/286828>.

@article{Raza2016,
abstract = {Let $R$ be a prime ring with center $Z$ and $I$ be a nonzero ideal of $R$. In this manuscript, we investigate the action of skew derivation $(\delta ,\varphi )$ of $R$ which acts as a homomorphism or an anti-homomorphism on $I$. Moreover, we provide an example for semiprime case.},
author = {Raza, Mohd Arif, Rehman, Nadeem ur, Huang, Shuliang},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {skew derivation; generalized polynomial identity (GPI); prime ring; ideal; prime rings; generalized derivations; Lie ideals; additive maps; homomorphisms; anti-homomorphisms},
language = {eng},
number = {3},
pages = {271-278},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On skew derivations as homomorphisms or anti-homomorphisms},
url = {http://eudml.org/doc/286828},
volume = {57},
year = {2016},
}

TY - JOUR
AU - Raza, Mohd Arif
AU - Rehman, Nadeem ur
AU - Huang, Shuliang
TI - On skew derivations as homomorphisms or anti-homomorphisms
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2016
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 57
IS - 3
SP - 271
EP - 278
AB - Let $R$ be a prime ring with center $Z$ and $I$ be a nonzero ideal of $R$. In this manuscript, we investigate the action of skew derivation $(\delta ,\varphi )$ of $R$ which acts as a homomorphism or an anti-homomorphism on $I$. Moreover, we provide an example for semiprime case.
LA - eng
KW - skew derivation; generalized polynomial identity (GPI); prime ring; ideal; prime rings; generalized derivations; Lie ideals; additive maps; homomorphisms; anti-homomorphisms
UR - http://eudml.org/doc/286828
ER -

References

top
  1. Asma A., Rehman N., Ali S., 10.1023/B:AMHU.0000003893.61349.98, Acta Math. Hungar. 101 (2003), 79–82. MR2011464DOI10.1023/B:AMHU.0000003893.61349.98
  2. Beidar K.I., Martindale W.S.III, Mikhalev A.V., Rings with Generalized Identities, Pure and Applied Mathematics, 196, Marcel Dekker, New York, 1996. Zbl0847.16001MR1368853
  3. Bell H.E., Kappe L.C., 10.1007/BF01953371, Acta Math. Hungar. 53 (1989), 339–346. Zbl0705.16021MR1014917DOI10.1007/BF01953371
  4. Dhara B., 10.1007/s13366-011-0051-9, Beitr. Algebra Geom. 53 (2012), no. 1, 203–209. Zbl1242.16039MR2890375DOI10.1007/s13366-011-0051-9
  5. Chuang C.L., 10.1090/S0002-9939-1988-0947646-4, Proc. Amer. Math. Soc. 103 (1988), no. 3, 723–728. Zbl0656.16006MR0947646DOI10.1090/S0002-9939-1988-0947646-4
  6. Chuang C.L., 10.1006/jabr.1993.1181, J. Algebra 160 (1993), 291–335. MR1237081DOI10.1006/jabr.1993.1181
  7. Chuang C.L., Lee T.K., 10.1016/j.jalgebra.2003.12.032, J. Algebra 288 (2005), 59–77. Zbl1073.16021MR2138371DOI10.1016/j.jalgebra.2003.12.032
  8. Eremita D., Ilisvic D., 10.3336/gm.47.1.08, Glas. Mat. Ser. III 47 (2012) no. 67, 105–118. MR2942778DOI10.3336/gm.47.1.08
  9. Erickson T.S., Martindale W.S.3rd., Osborn J.M., 10.2140/pjm.1975.60.49, Pacific. J. Math. 60 (1975), 49–63. Zbl0355.17005MR0382379DOI10.2140/pjm.1975.60.49
  10. Gusic I., 10.3336/gm.40.1.05, Glas. Mat. 40 (2005), 47–49. Zbl1072.16031MR2195859DOI10.3336/gm.40.1.05
  11. Jacobson N., Structure of Rings, Amer. Math. Soc. Colloq. Pub., 37, Providence, Rhode Island, 1964. Zbl0098.25901MR0222106
  12. Kharchenko V.K., Popov A.Z., 10.1080/00927879208824517, Comm. Algebra 20 (1992), 3321–3345. Zbl0783.16012MR1186710DOI10.1080/00927879208824517
  13. Kharchenko V.K., 10.1007/BF01668425, Algebra i Logika 14 (1975), no. 2, 132–148. Zbl0382.16009MR0399153DOI10.1007/BF01668425
  14. Lanski C., 10.1090/S0002-9939-1993-1132851-9, Proc. Amer. Math. Soc. 118 (1993), 75–80. Zbl0869.16027MR1132851DOI10.1090/S0002-9939-1993-1132851-9
  15. Lee P.H., Wong T.L., Derivations cocentralizing Lie ideals, Bull. Inst. Math. Acad. Sin. 23 (1995), no. 1–5. Zbl0827.16025MR1319474
  16. Rehman N., 10.3336/gm.39.1.03, Glas. Mat. 39 (2014), 27–30. MR2055383DOI10.3336/gm.39.1.03
  17. Rehman N., Raza M.A., On ideals with skew derivations of prime rings, Miskolc Math. Notes 15 (2014), no. 2, 717-724. Zbl1324.16048MR3302354
  18. Rehman N., Raza M.A., On m -commuting mappings with skew derivations in prime rings, Algebra i Analiz 27 (2015) no. 4, 74–86. Zbl1342.16040
  19. Rehman N., Raza M.A., 10.1016/j.ajmsc.2014.09.001, Arab. Math. J., http://dx.doi.org/10.1016/j.ajmsc.2014.09.001. DOI10.1016/j.ajmsc.2014.09.001
  20. Wang Y., You H., 10.1007/s10114-005-0840-x, Acta. Math. Sinica 23 (2007), 1149-1152. MR2319944DOI10.1007/s10114-005-0840-x

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.