Functionally countable subalgebras and some properties of the Banaschewski compactification
Commentationes Mathematicae Universitatis Carolinae (2016)
- Volume: 57, Issue: 3, page 365-379
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topOlfati, A. R.. "Functionally countable subalgebras and some properties of the Banaschewski compactification." Commentationes Mathematicae Universitatis Carolinae 57.3 (2016): 365-379. <http://eudml.org/doc/286833>.
@article{Olfati2016,
abstract = {Let $X$ be a zero-dimensional space and $C_c(X)$ be the set of all continuous real valued functions on $X$ with countable image. In this article we denote by $C_c^K(X)$ (resp., $C_c^\{\psi \}(X))$ the set of all functions in $C_c(X)$ with compact (resp., pseudocompact) support. First, we observe that $C_c^K(X)=O_c^\{\beta _0X\setminus X\}$ (resp., $C^\{\psi \}_c(X)=M_c^\{\beta _0X\setminus \upsilon _0X\}$), where $\beta _0X$ is the Banaschewski compactification of $X$ and $\upsilon _0X$ is the $\mathbb \{N\}$-compactification of $X$. This implies that for an $\mathbb \{N\}$-compact space $X$, the intersection of all free maximal ideals in $C_c(X)$ is equal to $C_c^K(X)$, i.e., $M_c^\{\beta _0X\setminus X\}=C_c^K(X)$. By applying methods of functionally countable subalgebras, we then obtain some results in the remainder of the Banaschewski compactification. We show that for a non-pseudocompact zero-dimensional space $X$, the set $\beta _0X\setminus \upsilon _0X$ has cardinality at least $2^\{2^\{\aleph _0\}\}$. Moreover, for a locally compact and $\mathbb \{N\}$-compact space $X$, the remainder $\beta _0X\setminus X$ is an almost $P$-space. These results lead us to find a class of Parovičenko spaces in the Banaschewski compactification of a non pseudocompact zero-dimensional space. We conclude with a theorem which gives a lower bound for the cellularity of the subspaces $\beta _0X\setminus \upsilon _0X$ and $\beta _0X\setminus X$, whenever $X$ is a zero-dimensional, locally compact space which is not pseudocompact.},
author = {Olfati, A. R.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {zero-dimensional space; strongly zero-dimensional space; $\mathbb \{N\}$-compact space; Banaschewski compactification; pseudocompact space; functionally countable subalgebra; support; cellularity; remainder; almost $P$-space; Parovičenko space},
language = {eng},
number = {3},
pages = {365-379},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Functionally countable subalgebras and some properties of the Banaschewski compactification},
url = {http://eudml.org/doc/286833},
volume = {57},
year = {2016},
}
TY - JOUR
AU - Olfati, A. R.
TI - Functionally countable subalgebras and some properties of the Banaschewski compactification
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2016
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 57
IS - 3
SP - 365
EP - 379
AB - Let $X$ be a zero-dimensional space and $C_c(X)$ be the set of all continuous real valued functions on $X$ with countable image. In this article we denote by $C_c^K(X)$ (resp., $C_c^{\psi }(X))$ the set of all functions in $C_c(X)$ with compact (resp., pseudocompact) support. First, we observe that $C_c^K(X)=O_c^{\beta _0X\setminus X}$ (resp., $C^{\psi }_c(X)=M_c^{\beta _0X\setminus \upsilon _0X}$), where $\beta _0X$ is the Banaschewski compactification of $X$ and $\upsilon _0X$ is the $\mathbb {N}$-compactification of $X$. This implies that for an $\mathbb {N}$-compact space $X$, the intersection of all free maximal ideals in $C_c(X)$ is equal to $C_c^K(X)$, i.e., $M_c^{\beta _0X\setminus X}=C_c^K(X)$. By applying methods of functionally countable subalgebras, we then obtain some results in the remainder of the Banaschewski compactification. We show that for a non-pseudocompact zero-dimensional space $X$, the set $\beta _0X\setminus \upsilon _0X$ has cardinality at least $2^{2^{\aleph _0}}$. Moreover, for a locally compact and $\mathbb {N}$-compact space $X$, the remainder $\beta _0X\setminus X$ is an almost $P$-space. These results lead us to find a class of Parovičenko spaces in the Banaschewski compactification of a non pseudocompact zero-dimensional space. We conclude with a theorem which gives a lower bound for the cellularity of the subspaces $\beta _0X\setminus \upsilon _0X$ and $\beta _0X\setminus X$, whenever $X$ is a zero-dimensional, locally compact space which is not pseudocompact.
LA - eng
KW - zero-dimensional space; strongly zero-dimensional space; $\mathbb {N}$-compact space; Banaschewski compactification; pseudocompact space; functionally countable subalgebra; support; cellularity; remainder; almost $P$-space; Parovičenko space
UR - http://eudml.org/doc/286833
ER -
References
top- Bhattacharjee P., Knox M.L., McGovern W.W., 10.4995/agt.2014.3181, Appl. Gen. Topol. 15 (2014), no. 2, 147–154. Zbl1305.54030MR3267269DOI10.4995/agt.2014.3181
- Engelking R., General Topology, PWN-Polish Sci. Publ., Warsaw, 1977. Zbl0684.54001MR0500780
- Engelking R., Mrówka S., On -compact spaces, Bull. Acad. Polon. Sci. 6 (1958), 429–436. Zbl0083.17402MR0097042
- Frankiewicz R., Zbierski P., Hausdorff Gaps and Limits, Studies in logic and the foundations of mathematics, 132, North-Holland, Amsterdam, 1994. Zbl0821.54001MR1311476
- Ghadermazi M., Karamzadeh O.A.S., Namdari M., 10.4171/RSMUP/129-4, Rend. Sem. Mat. Univ. Padova 129 (2013), 47–69. Zbl1279.54015MR3090630DOI10.4171/RSMUP/129-4
- Gillman L., Jerison M., Rings of Continuous Functions, Springer, New York-Heidelberg, 1976. Zbl0327.46040MR0407579
- Hager A., Kimber C., McGovern W.W., 10.1007/s10587-005-0031-z, Czechoslovak Math. J. 55 (2005), 409–421. MR2137147DOI10.1007/s10587-005-0031-z
- Hodel R.E., Jr., Cardinal functions , Handbook of Set-Theoretic Topology, Kunen K., Vaughan J.E. (eds.), North-Holland, Amsterdam, 1984, pp. 1–61. Zbl0559.54003MR0776620
- Johnson D.G., Mandelker M., 10.1016/0016-660X(73)90020-2, General Topology Appl. 3 (1973), 331–338. Zbl0277.54009MR0331310DOI10.1016/0016-660X(73)90020-2
- Levy R., 10.4153/CJM-1977-030-7, Canad. J. Math. 2 (1977), 284–288. Zbl0342.54032MR0464203DOI10.4153/CJM-1977-030-7
- Mandelker M., 10.1007/BF02771740, Israel. J. Math. 7 (1969), 1–8. Zbl0174.25604MR0244951DOI10.1007/BF02771740
- Mandelker M., 10.1090/S0002-9947-1971-0275367-4, Trans. Amer. Math. Soc. 156 (1971), 73–83. Zbl0197.48703MR0275367DOI10.1090/S0002-9947-1971-0275367-4
- Mrówka S., On universal spaces, Bull. Acad. Polon. Sci. Cl. III. 4 (1956), 479–481. Zbl0071.38301MR0089401
- Mrówka S., 10.1016/S1385-7258(65)50008-1, Vehr. Nederl. Akad. Weten. Sect. I. 68 (1965), 74–82. Zbl0139.07404MR0237580DOI10.1016/S1385-7258(65)50008-1
- Mrówka S., Shore S.D., Structures of continuous functions V. On homomorphisms of structures of continuous functions with zero-dimensional compact domain, Vehr. Nederl. Akad. Weten. Sect. I. 68 (1965), 92–94. MR0237582
- Mrówka S., On -compact spaces II, Bull.Acad. Polon. Sci. 14 (1966), 597–605. Zbl0161.19603
- Mrówka S., 10.1007/BF02394609, Acta. Math. Hung. 120 (1968), 161–185. Zbl0179.51202MR0226576DOI10.1007/BF02394609
- Mrówka S., Structures of continuous functions. I, Acta. Math. Hung. 21(3-4) (1970), 239–259. Zbl0229.46027MR0269706
- Pierce R. S., 10.1090/S0002-9947-1961-0131438-8, Trans. Amer. Math. Soc. 100 (1961), 371–394. Zbl0196.15401MR0131438DOI10.1090/S0002-9947-1961-0131438-8
- Porter J.R., Woods R.G., Extensions and Absolutes of Hausdorff Spaces, Springer, New York, 1988. Zbl0652.54016MR0918341
- Veksler A.I., -points, -sets, -spaces. A new class of order-continuous measures and functionals, Dokl. Akad. Nauk SSSR 14 (1973), 1445–1450. Zbl0291.54046MR0341447
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.