Functionally countable subalgebras and some properties of the Banaschewski compactification

A. R. Olfati

Commentationes Mathematicae Universitatis Carolinae (2016)

  • Volume: 57, Issue: 3, page 365-379
  • ISSN: 0010-2628

Abstract

top
Let X be a zero-dimensional space and C c ( X ) be the set of all continuous real valued functions on X with countable image. In this article we denote by C c K ( X ) (resp., C c ψ ( X ) ) the set of all functions in C c ( X ) with compact (resp., pseudocompact) support. First, we observe that C c K ( X ) = O c β 0 X X (resp., C c ψ ( X ) = M c β 0 X υ 0 X ), where β 0 X is the Banaschewski compactification of X and υ 0 X is the -compactification of X . This implies that for an -compact space X , the intersection of all free maximal ideals in C c ( X ) is equal to C c K ( X ) , i.e., M c β 0 X X = C c K ( X ) . By applying methods of functionally countable subalgebras, we then obtain some results in the remainder of the Banaschewski compactification. We show that for a non-pseudocompact zero-dimensional space X , the set β 0 X υ 0 X has cardinality at least 2 2 0 . Moreover, for a locally compact and -compact space X , the remainder β 0 X X is an almost P -space. These results lead us to find a class of Parovičenko spaces in the Banaschewski compactification of a non pseudocompact zero-dimensional space. We conclude with a theorem which gives a lower bound for the cellularity of the subspaces β 0 X υ 0 X and β 0 X X , whenever X is a zero-dimensional, locally compact space which is not pseudocompact.

How to cite

top

Olfati, A. R.. "Functionally countable subalgebras and some properties of the Banaschewski compactification." Commentationes Mathematicae Universitatis Carolinae 57.3 (2016): 365-379. <http://eudml.org/doc/286833>.

@article{Olfati2016,
abstract = {Let $X$ be a zero-dimensional space and $C_c(X)$ be the set of all continuous real valued functions on $X$ with countable image. In this article we denote by $C_c^K(X)$ (resp., $C_c^\{\psi \}(X))$ the set of all functions in $C_c(X)$ with compact (resp., pseudocompact) support. First, we observe that $C_c^K(X)=O_c^\{\beta _0X\setminus X\}$ (resp., $C^\{\psi \}_c(X)=M_c^\{\beta _0X\setminus \upsilon _0X\}$), where $\beta _0X$ is the Banaschewski compactification of $X$ and $\upsilon _0X$ is the $\mathbb \{N\}$-compactification of $X$. This implies that for an $\mathbb \{N\}$-compact space $X$, the intersection of all free maximal ideals in $C_c(X)$ is equal to $C_c^K(X)$, i.e., $M_c^\{\beta _0X\setminus X\}=C_c^K(X)$. By applying methods of functionally countable subalgebras, we then obtain some results in the remainder of the Banaschewski compactification. We show that for a non-pseudocompact zero-dimensional space $X$, the set $\beta _0X\setminus \upsilon _0X$ has cardinality at least $2^\{2^\{\aleph _0\}\}$. Moreover, for a locally compact and $\mathbb \{N\}$-compact space $X$, the remainder $\beta _0X\setminus X$ is an almost $P$-space. These results lead us to find a class of Parovičenko spaces in the Banaschewski compactification of a non pseudocompact zero-dimensional space. We conclude with a theorem which gives a lower bound for the cellularity of the subspaces $\beta _0X\setminus \upsilon _0X$ and $\beta _0X\setminus X$, whenever $X$ is a zero-dimensional, locally compact space which is not pseudocompact.},
author = {Olfati, A. R.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {zero-dimensional space; strongly zero-dimensional space; $\mathbb \{N\}$-compact space; Banaschewski compactification; pseudocompact space; functionally countable subalgebra; support; cellularity; remainder; almost $P$-space; Parovičenko space},
language = {eng},
number = {3},
pages = {365-379},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Functionally countable subalgebras and some properties of the Banaschewski compactification},
url = {http://eudml.org/doc/286833},
volume = {57},
year = {2016},
}

TY - JOUR
AU - Olfati, A. R.
TI - Functionally countable subalgebras and some properties of the Banaschewski compactification
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2016
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 57
IS - 3
SP - 365
EP - 379
AB - Let $X$ be a zero-dimensional space and $C_c(X)$ be the set of all continuous real valued functions on $X$ with countable image. In this article we denote by $C_c^K(X)$ (resp., $C_c^{\psi }(X))$ the set of all functions in $C_c(X)$ with compact (resp., pseudocompact) support. First, we observe that $C_c^K(X)=O_c^{\beta _0X\setminus X}$ (resp., $C^{\psi }_c(X)=M_c^{\beta _0X\setminus \upsilon _0X}$), where $\beta _0X$ is the Banaschewski compactification of $X$ and $\upsilon _0X$ is the $\mathbb {N}$-compactification of $X$. This implies that for an $\mathbb {N}$-compact space $X$, the intersection of all free maximal ideals in $C_c(X)$ is equal to $C_c^K(X)$, i.e., $M_c^{\beta _0X\setminus X}=C_c^K(X)$. By applying methods of functionally countable subalgebras, we then obtain some results in the remainder of the Banaschewski compactification. We show that for a non-pseudocompact zero-dimensional space $X$, the set $\beta _0X\setminus \upsilon _0X$ has cardinality at least $2^{2^{\aleph _0}}$. Moreover, for a locally compact and $\mathbb {N}$-compact space $X$, the remainder $\beta _0X\setminus X$ is an almost $P$-space. These results lead us to find a class of Parovičenko spaces in the Banaschewski compactification of a non pseudocompact zero-dimensional space. We conclude with a theorem which gives a lower bound for the cellularity of the subspaces $\beta _0X\setminus \upsilon _0X$ and $\beta _0X\setminus X$, whenever $X$ is a zero-dimensional, locally compact space which is not pseudocompact.
LA - eng
KW - zero-dimensional space; strongly zero-dimensional space; $\mathbb {N}$-compact space; Banaschewski compactification; pseudocompact space; functionally countable subalgebra; support; cellularity; remainder; almost $P$-space; Parovičenko space
UR - http://eudml.org/doc/286833
ER -

References

top
  1. Bhattacharjee P., Knox M.L., McGovern W.W., 10.4995/agt.2014.3181, Appl. Gen. Topol. 15 (2014), no. 2, 147–154. Zbl1305.54030MR3267269DOI10.4995/agt.2014.3181
  2. Engelking R., General Topology, PWN-Polish Sci. Publ., Warsaw, 1977. Zbl0684.54001MR0500780
  3. Engelking R., Mrówka S., On E -compact spaces, Bull. Acad. Polon. Sci. 6 (1958), 429–436. Zbl0083.17402MR0097042
  4. Frankiewicz R., Zbierski P., Hausdorff Gaps and Limits, Studies in logic and the foundations of mathematics, 132, North-Holland, Amsterdam, 1994. Zbl0821.54001MR1311476
  5. Ghadermazi M., Karamzadeh O.A.S., Namdari M., 10.4171/RSMUP/129-4, Rend. Sem. Mat. Univ. Padova 129 (2013), 47–69. Zbl1279.54015MR3090630DOI10.4171/RSMUP/129-4
  6. Gillman L., Jerison M., Rings of Continuous Functions, Springer, New York-Heidelberg, 1976. Zbl0327.46040MR0407579
  7. Hager A., Kimber C., McGovern W.W., 10.1007/s10587-005-0031-z, Czechoslovak Math. J. 55 (2005), 409–421. MR2137147DOI10.1007/s10587-005-0031-z
  8. Hodel R.E., Jr., Cardinal functions I , Handbook of Set-Theoretic Topology, Kunen K., Vaughan J.E. (eds.), North-Holland, Amsterdam, 1984, pp. 1–61. Zbl0559.54003MR0776620
  9. Johnson D.G., Mandelker M., 10.1016/0016-660X(73)90020-2, General Topology Appl. 3 (1973), 331–338. Zbl0277.54009MR0331310DOI10.1016/0016-660X(73)90020-2
  10. Levy R., 10.4153/CJM-1977-030-7, Canad. J. Math. 2 (1977), 284–288. Zbl0342.54032MR0464203DOI10.4153/CJM-1977-030-7
  11. Mandelker M., 10.1007/BF02771740, Israel. J. Math. 7 (1969), 1–8. Zbl0174.25604MR0244951DOI10.1007/BF02771740
  12. Mandelker M., 10.1090/S0002-9947-1971-0275367-4, Trans. Amer. Math. Soc. 156 (1971), 73–83. Zbl0197.48703MR0275367DOI10.1090/S0002-9947-1971-0275367-4
  13. Mrówka S., On universal spaces, Bull. Acad. Polon. Sci. Cl. III. 4 (1956), 479–481. Zbl0071.38301MR0089401
  14. Mrówka S., 10.1016/S1385-7258(65)50008-1, Vehr. Nederl. Akad. Weten. Sect. I. 68 (1965), 74–82. Zbl0139.07404MR0237580DOI10.1016/S1385-7258(65)50008-1
  15. Mrówka S., Shore S.D., Structures of continuous functions V. On homomorphisms of structures of continuous functions with zero-dimensional compact domain, Vehr. Nederl. Akad. Weten. Sect. I. 68 (1965), 92–94. MR0237582
  16. Mrówka S., On E -compact spaces II, Bull.Acad. Polon. Sci. 14 (1966), 597–605. Zbl0161.19603
  17. Mrówka S., 10.1007/BF02394609, Acta. Math. Hung. 120 (1968), 161–185. Zbl0179.51202MR0226576DOI10.1007/BF02394609
  18. Mrówka S., Structures of continuous functions. I, Acta. Math. Hung. 21(3-4) (1970), 239–259. Zbl0229.46027MR0269706
  19. Pierce R. S., 10.1090/S0002-9947-1961-0131438-8, Trans. Amer. Math. Soc. 100 (1961), 371–394. Zbl0196.15401MR0131438DOI10.1090/S0002-9947-1961-0131438-8
  20. Porter J.R., Woods R.G., Extensions and Absolutes of Hausdorff Spaces, Springer, New York, 1988. Zbl0652.54016MR0918341
  21. Veksler A.I., P ' -points, P ' -sets, P ' -spaces. A new class of order-continuous measures and functionals, Dokl. Akad. Nauk SSSR 14 (1973), 1445–1450. Zbl0291.54046MR0341447

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.