On the functionally countable subalgebra of C(X)

M. Ghadermazi; O. A. S. Karamzadeh; M. Namdari

Rendiconti del Seminario Matematico della Università di Padova (2013)

  • Volume: 129, page 47-70
  • ISSN: 0041-8994

How to cite

top

Ghadermazi, M., Karamzadeh, O. A. S., and Namdari, M.. "On the functionally countable subalgebra of C(X)." Rendiconti del Seminario Matematico della Università di Padova 129 (2013): 47-70. <http://eudml.org/doc/275101>.

@article{Ghadermazi2013,
author = {Ghadermazi, M., Karamzadeh, O. A. S., Namdari, M.},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {the ring ; -ideal; -ideal; zero-dimensional space; -space; -space; regular ring; self-injective ring; -selfinjective ring; socle},
language = {eng},
pages = {47-70},
publisher = {Seminario Matematico of the University of Padua},
title = {On the functionally countable subalgebra of C(X)},
url = {http://eudml.org/doc/275101},
volume = {129},
year = {2013},
}

TY - JOUR
AU - Ghadermazi, M.
AU - Karamzadeh, O. A. S.
AU - Namdari, M.
TI - On the functionally countable subalgebra of C(X)
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2013
PB - Seminario Matematico of the University of Padua
VL - 129
SP - 47
EP - 70
LA - eng
KW - the ring ; -ideal; -ideal; zero-dimensional space; -space; -space; regular ring; self-injective ring; -selfinjective ring; socle
UR - http://eudml.org/doc/275101
ER -

References

top
  1. [1] F. Azarpanah - O. A. S. Karamzadeh - A. Rezaei Aliabad, On z -ideals in C(X), Fund. Math.160 (1999), pp. 15–25. MR1694400
  2. [2] F. Azarpanah - O. A. S. Karamzadeh - S. Rahmati, C(X) VS. C(X) Modulo its socle, Colloq. Math. 3 (2008), pp. 315–336. MR2365803
  3. [3] F. Azarpanah - O. A. S. Karamzadeh, Algebraic characterization of some disconnected spaces, Italian. J. Pure Appl. Math.12 (2002), pp. 155–168. Zbl1117.54030MR1962109
  4. [4] F. Azarpanah - R. Mohamadian, z -ideals and z -ideals in C(X), Acta. Math. Sin. (Engl. ser), 23 (2007), pp. 989–996. MR2319609
  5. [5] T. Dube, Contracting the Socle in Rings of Continuous Functions, Rend. Semin. Mat. Univ. Padova, 123 (2010), pp. 37–53. Zbl1200.06005MR2683290
  6. [6] R. Engelking, General topology (Berlin: Heldermann, 1989). MR1039321
  7. [7] A. A. Estaji - O. A. S. Karamzadeh, On C(X) Modulo its socle, Comm. Algebra, 31 (2003), pp. 1561–1571. MR1972881
  8. [8] M. Ghadermazi - M. Namdari, On a-scattered spaces, Far East J. Math. Sci. (FJMS), 32 (2) (2009), pp. 267–274. MR2522761
  9. [9] L. Gillman - M. Jerison, Rings of continuous functions (Springer, 1976). MR407579
  10. [10] K. R. Goodearl, Von Neumann Regular Rings (Pitman, 1979). MR533669
  11. [11] M. Henriksen, Topology related to rings of real-valued continuous functions. Where it has been and where it might be going, Recent Progress In General Topology II, eds M. Husek and J. Van Mill (Elsevier Science, 2002), pp. 553–556. 
  12. [12] O. A. S. Karamzadeh, On a question of Matlis, Comm. Algebra, 25 (1997), pp. 2717–2726. Zbl0878.16003MR1458725
  13. [13] O. A. S. Karamzadeh, Modules whose countably generated submodules are epimorphic image, Colloq. Math.2 (1982), pp. 7–10. Zbl0508.16024MR678127
  14. [14] O. A. S. Karamzadeh - A. A. Koochakpour, On 0 -selfinjectivity of strongly regular rings, Comm. Algebra, 27 (1999), pp. 1501–1513. MR1679716
  15. [15] O. A. S. Karamzadeh - M. Motamedi - S. M. Shahrtash, On rings with a unique proper essential right ideal, Fund. Math.183 (2004), pp. 229–244. Zbl1076.16017MR2128709
  16. [16] O. A. S. Karamzadeh - M. Rostami, On the intrinsic topology and some related ideals of C(X), Proc. Amer. Math. Soc.93 (1985), pp. 179–184. Zbl0524.54013MR766552
  17. [17] S. Larson, A characterization of f-rings in which the sum of semiprime l-ideals is semiprime and its consequences, Comm. Algebra, (1995), pp. 5461–6481. Zbl0847.06007MR1363616
  18. [18] R. Levy - M. Matveev, Functional separability, Comment. Math. Univ. Carolin.51 (2010), pp. 705–711. Zbl1224.54063MR2858271
  19. [19] R. Levy - M. D. Rice, Normal P-spaces and the G δ -topology, Colloq. Math.47 (1981), pp. 227–240. MR652582
  20. [20] M. A. Mulero, Algebraic properties of rings of continuous functions, Fund. Math.149 (1996), pp. 55–66. Zbl0840.54020MR1372357
  21. [21] A. Pelczynski - Z. Semadeni, Spaces of continuous functions (III), Studia Mathematica, 18 (1959), pp. 211–222. Zbl0091.27803MR107806
  22. [22] R. Raphael - R. G. Woods, On essential ring embeddings and the epimorphic hull of C(X), Theory and Applications of Categories, 14 (2005), pp. 46–52. Zbl1069.18001MR2122824
  23. [23] W. Rudin, Continuous functions on compact spaces without perfect subsets, Proc. Amer. Math. Soc.8 (1957), pp. 39–42. MR85475
  24. [24] D. Rudd, On two sum theorems for ideals of C(X), Michigan Math. J.17 (1970), pp. 139–141. Zbl0194.44403MR259616
  25. [25] A. W. Wickstead, An intrinsic Characterization of selfinjective semi-prime commutative rings, Proc. R. Ir. Acad. 90 (A) (1989), pp. 117–124. Zbl0677.13003MR1092712

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.