Effective energy integral functionals for thin films with three dimensional bending moment in the Orlicz-Sobolev space setting
Włodzimierz Laskowski; Hong Thai Nguyen
Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2016)
- Volume: 36, Issue: 1, page 7-31
- ISSN: 1509-9407
Access Full Article
topAbstract
topHow to cite
topWłodzimierz Laskowski, and Hong Thai Nguyen. "Effective energy integral functionals for thin films with three dimensional bending moment in the Orlicz-Sobolev space setting." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 36.1 (2016): 7-31. <http://eudml.org/doc/286877>.
@article{WłodzimierzLaskowski2016,
abstract = {In this paper we consider an elastic thin film ω ⊂ ℝ² with the bending moment depending also on the third thickness variable. The effective energy functional defined on the Orlicz-Sobolev space over ω is described by Γ-convergence and 3D-2D dimension reduction techniques. Then we prove the existence of minimizers of the film energy functional. These results are proved in the case when the energy density function has the growth prescribed by an Orlicz convex function M. Here M is assumed to be non-power-growth-type and to satisfy the conditions Δ₂ and ∇₂.},
author = {Włodzimierz Laskowski, Hong Thai Nguyen},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {Γ-convergence; 3D-2D dimension reduction; quasiconvex relaxation; minimizers of variational integral functionals; thin films; elastic membranes; effective energy integral functional; bulk and surface energy; equilibrium states of the film; non-power-growth-type bulk energy density; reflexive Orlicz and Orlicz-Sobolev spaces; integral functionals; -convergence; Orlicz-Sobolev spaces},
language = {eng},
number = {1},
pages = {7-31},
title = {Effective energy integral functionals for thin films with three dimensional bending moment in the Orlicz-Sobolev space setting},
url = {http://eudml.org/doc/286877},
volume = {36},
year = {2016},
}
TY - JOUR
AU - Włodzimierz Laskowski
AU - Hong Thai Nguyen
TI - Effective energy integral functionals for thin films with three dimensional bending moment in the Orlicz-Sobolev space setting
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2016
VL - 36
IS - 1
SP - 7
EP - 31
AB - In this paper we consider an elastic thin film ω ⊂ ℝ² with the bending moment depending also on the third thickness variable. The effective energy functional defined on the Orlicz-Sobolev space over ω is described by Γ-convergence and 3D-2D dimension reduction techniques. Then we prove the existence of minimizers of the film energy functional. These results are proved in the case when the energy density function has the growth prescribed by an Orlicz convex function M. Here M is assumed to be non-power-growth-type and to satisfy the conditions Δ₂ and ∇₂.
LA - eng
KW - Γ-convergence; 3D-2D dimension reduction; quasiconvex relaxation; minimizers of variational integral functionals; thin films; elastic membranes; effective energy integral functional; bulk and surface energy; equilibrium states of the film; non-power-growth-type bulk energy density; reflexive Orlicz and Orlicz-Sobolev spaces; integral functionals; -convergence; Orlicz-Sobolev spaces
UR - http://eudml.org/doc/286877
ER -
References
top- [1] E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations, Arch. Ration. Mech. Anal. 86 (1984), 125-145. doi: 10.1007/BF00275731 Zbl0565.49010
- [2] R.A. Adams and J.J.F. Fournier, Sobolev Spaces, 2 ed. (Academic Press, 2003). Zbl1098.46001
- [3] A. Alberico and A. Cianchi, Differentiability properties of Orlicz-Sobolev functions, Ark. Mat. 43 (2005), 1-28. doi: 10.1007/BF02383608 Zbl1119.46030
- [4] G. Bouchitté, I. Fonseca and M.L. Mascarenhas, Bending moment in membrane theory, J. Elasticity 73 (2004), 75-99. doi: 10.1023/B:ELAS.0000029996.20973.92 Zbl1059.74034
- [5] G. Bouchitté, I. Fonseca and M.L. Mascarenhas, The Cosserat Vector In Membrane Theory: A Variational Approach, J. Convex Anal. 16 (2009), 351-365. Zbl1179.35015
- [6] A. Braides, I. Fonseca and G. Francfort, 3D-2D-asymptotic analysis for inhomogeneous thin films, Indiana Univ. Math. J. 49 (2000), 1367-1404. doi: 10.1512/iumj.2000.49.1822 Zbl0987.35020
- [7] D. Breit, B. Stroffolini and A. Verde, A general regularity theorem for functionals with ϕ-growth, J. Math. Anal. Appl. 383 (2011), 226-233. doi: 10.1016/j.jmaa.2011.05.012 Zbl1218.49043
- [8] B. Dacorogna, Direct Methods in the Calculus of Variations, 2nd revised edition (Springer, Berlin, 2008). Zbl1140.49001
- [9] G. Dal Maso, An Introduction to Γ-Convergence (Birkhäuser, Boston, 1993). doi: 10.1007/978-1-4612-0327-8
- [10] T.K. Donaldson and N.S. Trudinger, Orlicz-Sobolev spaces and imbedding theorems, J. Funct. Anal. 8 (1971), 52-75. doi: 10.1016/0022-1236(71)90018-8 Zbl0216.15702
- [11] N. Dunford and J.T. Schwartz, Linear Operators, Part I: General Theory (Interscience, New York, 1957). Zbl0084.10402
- [12] A. Fiorenza and M. Krbec, Indices of Orlicz spaces and some applications, Comment. Math. Univ. Carolinae 38 (1997), 433-451. Zbl0937.46023
- [13] M. Focardi, Semicontinuity of vectorial functionals in Orlicz-Sobolev spaces, Rend. Istit. Mat. Univ. Trieste 29 (1997), 141-161. Zbl0924.49011
- [14] I. Fonseca, S. Müller and P.Pedregal, Analysis of concentration and oscillation effects generated by gradients, S, IAM J. Math. Anal. 29 (1998), 736-756. doi: 10.1137/S0036141096306534 Zbl0920.49009
- [15] A. Fougères, Théoremès de trace et de prolongement dans les espaces de Sobolev et Sobolev-Orlicz, C.R. Acad. Sci. Paris Sér. A-B 274 (1972), A181-A184. Zbl0226.46036
- [16] G. Friesecke, R.D. James and S. Müller, A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence, Arch. Ration. Mech. Anal. 180 (2006), 183-236. doi: 10.1007/s00205-005-0400-7 Zbl1100.74039
- [17] M. García-Huidobro, V.K. Le, R. Manásevich and K. Schmitt, On principal eigenvalues for quasilinear elliptic differential operators: an Orlicz-Sobolev space setting, NoDEA Nonlinear Differential Equations Appl. 6 (1999), 207-225. doi: 10.1007/s000300050073 Zbl0936.35067
- [18] J.-P. Gossez, Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coeffcients, Trans. Am. Math. Soc. 190 (1974), 163-205. doi: 10.1090/S0002-9947-1974-0342854-2 Zbl0239.35045
- [19] H. Hudzik, The problems of separability, duality, reflexivity and of comparison for generalized Orlicz-Sobolev spaces W_k^M(Ω), Comment. Math. Prace Mat. 21 (1980), 315-324.
- [20] A. Kamińska and B. Turett, Type and cotype in Musielak-Orlicz spaces, in: Geometry of Banach Spaces, London Mathematical Society Lecture Note Series 158 (1991) Cambridge University Press, 165-180. doi: 10.1017/CBO9780511662317.015 Zbl0770.46009
- [21] A. Kałamajska and M. Krbec, Traces of Orlicz-Sobolev functions under general growth restrictions, Mathematische Nachrichten 286 (2013), 730-742. doi: 10.1002/mana.201100185 Zbl1276.46026
- [22] V.S. Klimov, On imbedding theorems for anisotropic classes of functions, Mathematics of the USSR-Sbornik 55 (1986), 195-205. doi: 10.1070/SM1986v055n01ABEH002999 Zbl0603.46039
- [23] M.A. Krasnosel’skii and Ya.B. Rutickii, Convex Functions and Orlicz Spaces (P. Noordhoof LTD., Groningen, 1961).
- [24] W. Laskowski and H.T. Nguyen, Effective energy integral functionals for thin films in the Orlicz-Sobolev space setting, Demonstratio Math. 46 (2013), 589-608. Zbl1288.49005
- [25] W. Laskowski and H.T. Nguyen, Effective energy integral functionals for thin films with bending moment in the Orlicz-Sobolev space setting, Banach Center Publ., Polish Acad. Sci., Warsaw 102 (2014), 143-167. Zbl1307.49014
- [26] H. Le Dret and A. Raoult, Le modèle de membrane non linéaire comme limite variationnelle de l’élasticité non linéaire tridimensionnelle, C.R. Acad. Sci. Paris Sér. I Math. 317 (1993), 221-226.
- [27] H. Le Dret and A. Raoult, The nonlinear membrane model as variational limit of nonlinear threedimensional elasticity, J. Math. Pures Appl. 74 (1995), 549-578. Zbl0847.73025
- [28] L. Maligranda, Indices and interpolation, Dissertationes Math. (Rozprawy Mat.) 234 (1985), 1-49.
- [29] L. Maligranda, Orlicz Spaces and Interpolation, Seminars in Mathematics 5, Campinas SP, Univ. of Campinas (Brazil, 1989).
- [30] V. Mazja, Sobolev Spaces (Springer, New York, 1985). doi: 10.1007/978-3-662-09922-3
- [31] M.G. Mora and L. Scardia, Convergence of equilibria of thin elastic plates under physical growth conditions for the energy density, J. Diff. Equ. 252 (2012), 35-55. doi: 10.1016/j.jde.2011.09.009 Zbl1291.74128
- [32] C.B.Jr. Morrey, Multiple Integrals in the Calculus of Variations (Classics in Mathematics) (Springer, New York, 1966, Reprint in 2008). Zbl0142.38701
- [33] J. Musielak, Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034 (Springer, Berlin, 1983).
- [34] P. Pedregal, Parametrized Measures and Variational Principles (Birkhäuser, Basel, 1997). doi: 10.1007/978-3-0348-8886-8 Zbl0879.49017
- [35] R. Płuciennik, S. Tian and Y. Wang, Non-convex integral functionals on MusielakOrlicz spaces, Comment. Math. Prace Mat. 30 (1990), 113-123. Zbl0762.46016
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.