On the associated prime ideals of local cohomology modules defined by a pair of ideals
Maryam Jahangiri; Zohreh Habibi; Khadijeh Ahmadi Amoli
Discussiones Mathematicae General Algebra and Applications (2016)
- Volume: 36, Issue: 1, page 15-23
- ISSN: 1509-9415
Access Full Article
topAbstract
topHow to cite
topMaryam Jahangiri, Zohreh Habibi, and Khadijeh Ahmadi Amoli. "On the associated prime ideals of local cohomology modules defined by a pair of ideals." Discussiones Mathematicae General Algebra and Applications 36.1 (2016): 15-23. <http://eudml.org/doc/286935>.
@article{MaryamJahangiri2016,
abstract = {Let I and J be two ideals of a commutative Noetherian ring R and M be an R-module. For a non-negative integer n it is shown that, if the sets $Ass_\{R\}(Ext^\{n\}_\{R\}(R/I,M))$ and $Supp_\{R\}(Ext^\{i\}_\{R\}(R/I,H^\{j\}_\{I,J\}(M)))$ are finite for all i ≤ n+1 and all j < n, then so is $Ass_\{R\}(Hom_\{R\}(R/I,H^\{n\}_\{I,J\}(M)))$. We also study the finiteness of $Ass_\{R\}(Ext^\{i\}_\{R\}(R/I,H^\{n\}_\{I,J\}(M)))$ for i = 1,2.},
author = {Maryam Jahangiri, Zohreh Habibi, Khadijeh Ahmadi Amoli},
journal = {Discussiones Mathematicae General Algebra and Applications},
keywords = {local cohomology modules defined by a pair of ideals; spectral sequences; associated prime ideals},
language = {eng},
number = {1},
pages = {15-23},
title = {On the associated prime ideals of local cohomology modules defined by a pair of ideals},
url = {http://eudml.org/doc/286935},
volume = {36},
year = {2016},
}
TY - JOUR
AU - Maryam Jahangiri
AU - Zohreh Habibi
AU - Khadijeh Ahmadi Amoli
TI - On the associated prime ideals of local cohomology modules defined by a pair of ideals
JO - Discussiones Mathematicae General Algebra and Applications
PY - 2016
VL - 36
IS - 1
SP - 15
EP - 23
AB - Let I and J be two ideals of a commutative Noetherian ring R and M be an R-module. For a non-negative integer n it is shown that, if the sets $Ass_{R}(Ext^{n}_{R}(R/I,M))$ and $Supp_{R}(Ext^{i}_{R}(R/I,H^{j}_{I,J}(M)))$ are finite for all i ≤ n+1 and all j < n, then so is $Ass_{R}(Hom_{R}(R/I,H^{n}_{I,J}(M)))$. We also study the finiteness of $Ass_{R}(Ext^{i}_{R}(R/I,H^{n}_{I,J}(M)))$ for i = 1,2.
LA - eng
KW - local cohomology modules defined by a pair of ideals; spectral sequences; associated prime ideals
UR - http://eudml.org/doc/286935
ER -
References
top- [1] M. Aghapournahr, Kh. Ahmadi-Amoli and M.Y. Sadeghi, The concept of (I,J)-cohen Macaulay modules, J. Algebraic Syst. 3 (1) (2015), 1-10. Zbl1308.13027
- [2] N. Bourbaki, Commutative Algebra, Translated from French (Hermann, Paris, 1972).
- [3] M. Brodmann, Asymptotic behaviour of cohomology: tameness,supports and associated primes, S. Ghorpade, H. Srinivasan, J. Verma (Eds.), 'Commutative Algebra and Algebraic Geometry' Proceedings, Joint International Meeting of the AMS and the IMS on Commutative Algebra and Algebraic Geometry, Bangalore/India, December 17-20, 2003, Contemporary Mathematics 390 (2005) 31-61. doi: 10.1090/conm/390/07292
- [4] M.P. Brodmann and A. Lashgari Faghani, A finiteness result for associated primes of local cohomology modules, Proc. Amer. Math. Soc. 128 (10) (2000), 2851-2853. doi: 10.1090/S0002-9939-00-05328-4 Zbl0955.13007
- [5] M.P. Brodmann and R.Y. Sharp, Local cohomology: An algebraic introduction with geometric applications (Cambridge University Press, 1998). doi: 10.1017/CBO9780511629204 Zbl0903.13006
- [6] W. Bruns and J. Herzog, Cohen-Macaulay Rings (Cambridge University Press, revised ed., 1998). doi: 10.1017/CBO9780511608681
- [7] L. Chu, Top local cohomology modules with respect to a pair of ideals, Proc. Amer. Math. Soc. 139 (2011), 777-782. doi: 10.1090/S0002-9939-2010-10471-9 Zbl1210.13018
- [8] L. Chu and Q. Wang, Some results on local cohomology modules defined by a pair of ideals, J. Math. Kyoto Univ. bf 49 (2009), 193-200. Zbl1174.13024
- [9] R. Hartshorne, Affine duality and cofiniteness, Invent. Math. 9 (1970), 145-164. doi: 10.1007/BF01404554 Zbl0196.24301
- [10] C. Huneke, Free resolutions in commutative algebra and algebraic geometry, Res. Notes Math. 2, Jones and Bartlett (Boston, MA, 1992), 93-108.
- [11] J. Rotman, An Introduction to Homological Algebra (Academic Press, Second Edition, 2009). doi: 10.1007/b98977 Zbl1157.18001
- [12] P. Schenzel, Explicit computations around the Lichtenbaum-Hartshorne vanishing theorem, Manuscripta Math. 78 (1) (1993), 57-68. doi: 10.1007/BF02599300 Zbl0797.13010
- [13] A. Singh, P-torsion elements in local cohomology modules (English summary), Math. Res. Lett. 7 (2000), 165-176. doi: 10.4310/MRL.2000.v7.n2.a3 Zbl0965.13013
- [14] R. Takahashi, Y. Yoshino and T. Yoshizawa, Local cohomology based on a nonclosed support defined by a pair of ideals, J. Pure Appl. Algebra. 213 (2009), 582-600. doi: 10.1016/j.jpaa.2008.09.008 Zbl1160.13013
- [15] A. Tehranian and A. Pour Eshmanan Talemi, Cofinitness of local cohomology based on a non-closed spport defiend by a pair of ideals, Bull. Iranian Math. Soc. 36 (2) (2010), 145-155.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.