Displaying similar documents to “On the associated prime ideals of local cohomology modules defined by a pair of ideals”

Associated primes of local cohomology modules of generalized Laskerian modules

Dawood Hassanzadeh-Lelekaami, Hajar Roshan-Shekalgourabi (2019)

Czechoslovak Mathematical Journal

Similarity:

Let be a set of ideals of a commutative Noetherian ring R . We use the notion of -closure operation which is a semiprime closure operation on submodules of modules to introduce the class of -Laskerian modules. This enables us to investigate the set of associated prime ideals of certain -closed submodules of local cohomology modules.

On the endomorphism ring and Cohen-Macaulayness of local cohomology defined by a pair of ideals

Thiago H. Freitas, Victor H. Jorge Pérez (2019)

Czechoslovak Mathematical Journal

Similarity:

Let 𝔞 , I , J be ideals of a Noetherian local ring ( R , 𝔪 , k ) . Let M and N be finitely generated R -modules. We give a generalized version of the Duality Theorem for Cohen-Macaulay rings using local cohomology defined by a pair of ideals. We study the behavior of the endomorphism rings of H I , J t ( M ) and D ( H I , J t ( M ) ) , where t is the smallest integer such that the local cohomology with respect to a pair of ideals is nonzero and D ( - ) : = Hom R ( - , E R ( k ) ) is the Matlis dual functor. We show that if R is a d -dimensional complete Cohen-Macaulay...

Semiproper ideals

Hiroshi Sakai (2005)

Fundamenta Mathematicae

Similarity:

We say that an ideal I on κ λ is semiproper if the corresponding poset I is semiproper. In this paper we investigate properties of semiproper ideals on κ λ .

On norm closed ideals in L ( p , q )

B. Sari, Th. Schlumprecht, N. Tomczak-Jaegermann, V. G. Troitsky (2007)

Studia Mathematica

Similarity:

It is well known that the only proper non-trivial norm closed ideal in the algebra L(X) for X = p (1 ≤ p < ∞) or X = c₀ is the ideal of compact operators. The next natural question is to describe all closed ideals of L ( p q ) for 1 ≤ p,q < ∞, p ≠ q, or equivalently, the closed ideals in L ( p , q ) for p < q. This paper shows that for 1 < p < 2 < q < ∞ there are at least four distinct proper closed ideals in L ( p , q ) , including one that has not been studied before. The proofs use various methods...

Monomial ideals with tiny squares and Freiman ideals

Ibrahim Al-Ayyoub, Mehrdad Nasernejad (2021)

Czechoslovak Mathematical Journal

Similarity:

We provide a construction of monomial ideals in R = K [ x , y ] such that μ ( I 2 ) < μ ( I ) , where μ denotes the least number of generators. This construction generalizes the main result of S. Eliahou, J. Herzog, M. Mohammadi Saem (2018). Working in the ring R , we generalize the definition of a Freiman ideal which was introduced in J. Herzog, G. Zhu (2019) and then we give a complete characterization of such ideals. A particular case of this characterization leads to some further investigations on μ ( I k ) that generalize...

On quasi n -ideals of commutative rings

Adam Anebri, Najib Mahdou, Emel Aslankarayiğit Uğurlu (2022)

Czechoslovak Mathematical Journal

Similarity:

Let R be a commutative ring with a nonzero identity. In this study, we present a new class of ideals lying properly between the class of n -ideals and the class of ( 2 , n ) -ideals. A proper ideal I of R is said to be a quasi n -ideal if I is an n -ideal of R . Many examples and results are given to disclose the relations between this new concept and others that already exist, namely, the n -ideals, the quasi primary ideals, the ( 2 , n ) -ideals and the p r -ideals. Moreover, we use the quasi n -ideals to characterize...

Decomposition of finitely generated modules using Fitting ideals

Somayeh Hadjirezaei, Sina Hedayat (2020)

Czechoslovak Mathematical Journal

Similarity:

Let R be a commutative Noetherian ring and M be a finitely generated R -module. The main result of this paper is to characterize modules whose first nonzero Fitting ideal is a product of maximal ideals of R , in some cases.

On domains with ACC on invertible ideals

Stefania Gabelli (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

If A is a domain with the ascending chain condition on (integral) invertible ideals, then the group I ( A ) of its invertible ideals is generated by the set I m ( A ) of maximal invertible ideals. In this note we study some properties of I m ( A ) and we prove that, if I ( A ) is a free group on I m ( A ) , then A is a locally factorial Krull domain.

Melkersson condition on Serre subcategories

Reza Sazeedeh, Rasul Rasuli (2016)

Colloquium Mathematicae

Similarity:

Let R be a commutative noetherian ring, let be an ideal of R, and let be a subcategory of the category of R-modules. The condition C , defined for R-modules, was introduced by Aghapournahr and Melkersson (2008) in order to study when the local cohomology modules relative to belong to . In this paper, we define and study the class consisting of all modules satisfying C . If and are ideals of R, we get a necessary and sufficient condition for to satisfy C and C simultaneously. We also...

( δ , 2 ) -primary ideals of a commutative ring

Gülşen Ulucak, Ece Yetkin Çelikel (2020)

Czechoslovak Mathematical Journal

Similarity:

Let R be a commutative ring with nonzero identity, let ( ) be the set of all ideals of R and δ : ( ) ( ) an expansion of ideals of R defined by I δ ( I ) . We introduce the concept of ( δ , 2 ) -primary ideals in commutative rings. A proper ideal I of R is called a ( δ , 2 ) -primary ideal if whenever a , b R and a b I , then a 2 I or b 2 δ ( I ) . Our purpose is to extend the concept of 2 -ideals to ( δ , 2 ) -primary ideals of commutative rings. Then we investigate the basic properties of ( δ , 2 ) -primary ideals and also discuss the relations among ( δ , 2 ) -primary, δ -primary...

Squarefree monomial ideals with maximal depth

Ahad Rahimi (2020)

Czechoslovak Mathematical Journal

Similarity:

Let ( R , 𝔪 ) be a Noetherian local ring and M a finitely generated R -module. We say M has maximal depth if there is an associated prime 𝔭 of M such that depth M = dim R / 𝔭 . In this paper we study squarefree monomial ideals which have maximal depth. Edge ideals of cycle graphs, transversal polymatroidal ideals and high powers of connected bipartite graphs with this property are classified.

On domains with ACC on invertible ideals

Stefania Gabelli (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

If A is a domain with the ascending chain condition on (integral) invertible ideals, then the group I ( A ) of its invertible ideals is generated by the set I m ( A ) of maximal invertible ideals. In this note we study some properties of I m ( A ) and we prove that, if I ( A ) is a free group on I m ( A ) , then A is a locally factorial Krull domain.

Local-global principle for annihilation of general local cohomology

J. Asadollahi, K. Khashyarmanesh, Sh. Salarian (2001)

Colloquium Mathematicae

Similarity:

Let A be a Noetherian ring, let M be a finitely generated A-module and let Φ be a system of ideals of A. We prove that, for any ideal in Φ, if, for every prime ideal of A, there exists an integer k(), depending on , such that k ( ) kills the general local cohomology module H Φ j ( M ) for every integer j less than a fixed integer n, where Φ : = : Φ , then there exists an integer k such that k H Φ j ( M ) = 0 for every j < n.

Some results on top local cohomology modules with respect to a pair of ideals

Saeed Jahandoust, Reza Naghipour (2020)

Mathematica Bohemica

Similarity:

Let I and J be ideals of a Noetherian local ring ( R , 𝔪 ) and let M be a nonzero finitely generated R -module. We study the relation between the vanishing of H I , J dim M ( M ) and the comparison of certain ideal topologies. Also, we characterize when the integral closure of an ideal relative to the Noetherian R -module M / J M is equal to its integral closure relative to the Artinian R -module H I , J dim M ( M ) .

α -ideals in 0 -distributive posets

Khalid A. Mokbel (2015)

Mathematica Bohemica

Similarity:

The concept of α -ideals in posets is introduced. Several properties of α -ideals in 0 -distributive posets are studied. Characterization of prime ideals to be α -ideals in 0 -distributive posets is obtained in terms of minimality of ideals. Further, it is proved that if a prime ideal I of a 0 -distributive poset is non-dense, then I is an α -ideal. Moreover, it is shown that the set of all α -ideals α Id ( P ) of a poset P with 0 forms a complete lattice. A result analogous to separation theorem for...

Effective Nullstellensatz for arbitrary ideals

János Kollár (1999)

Journal of the European Mathematical Society

Similarity:

Let f i be polynomials in n variables without a common zero. Hilbert’s Nullstellensatz says that there are polynomials g i such that g i f i = 1 . The effective versions of this result bound the degrees of the g i in terms of the degrees of the f j . The aim of this paper is to generalize this to the case when the f i are replaced by arbitrary ideals. Applications to the Bézout theorem, to Łojasiewicz–type inequalities and to deformation theory are also discussed.

Some bounds for the annihilators of local cohomology and Ext modules

Ali Fathi (2022)

Czechoslovak Mathematical Journal

Similarity:

Let 𝔞 be an ideal of a commutative Noetherian ring R and t be a nonnegative integer. Let M and N be two finitely generated R -modules. In certain cases, we give some bounds under inclusion for the annihilators of Ext R t ( M , N ) and H 𝔞 t ( M ) in terms of minimal primary decomposition of the zero submodule of M , which are independent of the choice of minimal primary decomposition. Then, by using those bounds, we compute the annihilators of local cohomology and Ext modules in certain cases.

G r - ( 2 , n ) -ideals in graded commutative rings

Khaldoun Al-Zoubi, Shatha Alghueiri, Ece Y. Celikel (2020)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let G be a group with identity e and let R be a G -graded ring. In this paper, we introduce and study the concept of graded ( 2 , n ) -ideals of R . A proper graded ideal I of R is called a graded ( 2 , n ) -ideal of R if whenever r s t I where r , s , t h ( R ) , then either r t I or r s G r ( 0 ) or s t G r ( 0 ) . We introduce several results concerning g r - ( 2 , n ) -ideals. For example, we give a characterization of graded ( 2 , n ) -ideals and their homogeneous components. Also, the relations between graded ( 2 , n ) -ideals and others that already exist, namely, the graded prime...

Annihilator ideals of finite dimensional simple modules of two-parameter quantized enveloping algebra U r , s ( 𝔰𝔩 2 )

Yu Wang, Xiaoming Li (2023)

Czechoslovak Mathematical Journal

Similarity:

Let U be the two-parameter quantized enveloping algebra U r , s ( 𝔰𝔩 2 ) and F ( U ) the locally finite subalgebra of U under the adjoint action. The aim of this paper is to determine some ring-theoretical properties of F ( U ) in the case when r s - 1 is not a root of unity. Then we describe the annihilator ideals of finite dimensional simple modules of U by generators.