On the superstability of generalized d’Alembert harmonic functions

Iz-iddine EL-Fassi

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica (2016)

  • Volume: 15, page 5-13
  • ISSN: 2300-133X

Abstract

top
The aim of this paper is to study the superstability problem of the d’Alembert type functional equation f(x+y+z)+f(x+y+σ(z))+f(x+σ(y)+z)+f(σ(x)+y+z)=4f(x)f(y)f(z) f ( x + y + z ) + f ( x + y + σ ( z ) ) + f ( x + σ ( y ) + z ) + f ( σ ( x ) + y + z ) = 4 f ( x ) f ( y ) f ( z ) for all x, y, z ∈ G, where G is an abelian group and σ : G → G is an endomorphism such that σ(σ(x)) = x for an unknown function f from G into ℂ or into a commutative semisimple Banach algebra.

How to cite

top

Iz-iddine EL-Fassi. "On the superstability of generalized d’Alembert harmonic functions." Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica 15 (2016): 5-13. <http://eudml.org/doc/287162>.

@article{Iz2016,
abstract = {The aim of this paper is to study the superstability problem of the d’Alembert type functional equation f(x+y+z)+f(x+y+σ(z))+f(x+σ(y)+z)+f(σ(x)+y+z)=4f(x)f(y)f(z) \[f(x + y + z) + f(x + y + \sigma (z)) + f(x + \sigma (y) + z) + f(\sigma (x) + y + z) = 4f(x)f(y)f(z)\] for all x, y, z ∈ G, where G is an abelian group and σ : G → G is an endomorphism such that σ(σ(x)) = x for an unknown function f from G into ℂ or into a commutative semisimple Banach algebra.},
author = {Iz-iddine EL-Fassi},
journal = {Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica},
keywords = {stability; d’Alembert functional equation; d'Alembert functional equation; superstability; abelian group; Banach algebra},
language = {eng},
pages = {5-13},
title = {On the superstability of generalized d’Alembert harmonic functions},
url = {http://eudml.org/doc/287162},
volume = {15},
year = {2016},
}

TY - JOUR
AU - Iz-iddine EL-Fassi
TI - On the superstability of generalized d’Alembert harmonic functions
JO - Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica
PY - 2016
VL - 15
SP - 5
EP - 13
AB - The aim of this paper is to study the superstability problem of the d’Alembert type functional equation f(x+y+z)+f(x+y+σ(z))+f(x+σ(y)+z)+f(σ(x)+y+z)=4f(x)f(y)f(z) \[f(x + y + z) + f(x + y + \sigma (z)) + f(x + \sigma (y) + z) + f(\sigma (x) + y + z) = 4f(x)f(y)f(z)\] for all x, y, z ∈ G, where G is an abelian group and σ : G → G is an endomorphism such that σ(σ(x)) = x for an unknown function f from G into ℂ or into a commutative semisimple Banach algebra.
LA - eng
KW - stability; d’Alembert functional equation; d'Alembert functional equation; superstability; abelian group; Banach algebra
UR - http://eudml.org/doc/287162
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.