Displaying similar documents to “On the superstability of generalized d’Alembert harmonic functions”

D'Alembert's functional equation on groups

Henrik Stetkær (2013)

Banach Center Publications

Similarity:

Given a (not necessarily unitary) character μ:G → (ℂ∖0,·) of a group G we find the solutions g: G → ℂ of the following version of d’Alembert’s functional equation g ( x y ) + μ ( y ) g ( x y - 1 ) = 2 g ( x ) g ( y ) , x,y ∈ G. (*) The classical equation is the case of μ = 1 and G = ℝ. The non-zero solutions of (*) are the normalized traces of certain representations of G on ℂ². Davison proved this via his work [20] on the pre-d’Alembert functional equation on monoids. The present paper presents a detailed exposition of these results working...

On the functional equation defined by Lie's product formula

Gerd Herzog, Christoph Schmoeger (2006)

Studia Mathematica

Similarity:

Let E be a real normed space and a complex Banach algebra with unit. We characterize the continuous solutions f: E → of the functional equation f ( x + y ) = l i m n ( f ( x / n ) f ( y / n ) ) .

On the superstability of the cosine and sine type functional equations

Fouad Lehlou, Mohammed Moussa, Ahmed Roukbi, Samir Kabbaj (2016)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

Similarity:

In this paper, we study the superstablity problem of the cosine and sine type functional equations: f(xσ(y)a)+f(xya)=2f(x)f(y) f ( x σ ( y ) a ) + f ( x y a ) = 2 f ( x ) f ( y ) and f(xσ(y)a)−f(xya)=2f(x)f(y), f ( x σ ( y ) a ) - f ( x y a ) = 2 f ( x ) f ( y ) , where f : S → ℂ is a complex valued function; S is a semigroup; σ is an involution of S and a is a fixed element in the center of S.

On a generalization of Abelian sequential groups

Saak S. Gabriyelyan (2013)

Fundamenta Mathematicae

Similarity:

Let (G,τ) be a Hausdorff Abelian topological group. It is called an s-group (resp. a bs-group) if there is a set S of sequences in G such that τ is the finest Hausdorff (resp. precompact) group topology on G in which every sequence of S converges to zero. Characterizations of Abelian s- and bs-groups are given. If (G,τ) is a maximally almost periodic (MAP) Abelian s-group, then its Pontryagin dual group ( G , τ ) is a dense -closed subgroup of the compact group ( G d ) , where G d is the group G with...

Uniqueness of the topology on L¹(G)

J. Extremera, J. F. Mena, A. R. Villena (2002)

Studia Mathematica

Similarity:

Let G be a locally compact abelian group and let X be a translation invariant linear subspace of L¹(G). If G is noncompact, then there is at most one Banach space topology on X that makes translations on X continuous. In fact, the Banach space topology on X is determined just by a single nontrivial translation in the case where the dual group Ĝ is connected. For G compact we show that the problem of determining a Banach space topology on X by considering translation operators on X is...

Subsequence sums of zero-sum free sequences over finite abelian groups

Yongke Qu, Xingwu Xia, Lin Xue, Qinghai Zhong (2015)

Colloquium Mathematicae

Similarity:

Let G be a finite abelian group of rank r and let X be a zero-sum free sequence over G whose support supp(X) generates G. In 2009, Pixton proved that | Σ ( X ) | 2 r - 1 ( | X | - r + 2 ) - 1 for r ≤ 3. We show that this result also holds for abelian groups G of rank 4 if the smallest prime p dividing |G| satisfies p ≥ 13.

On Popoviciu-Ionescu Functional Equation

Jose M. Almira (2016)

Annales Mathematicae Silesianae

Similarity:

We study a functional equation first proposed by T. Popoviciu [15] in 1955. It was solved for the easiest case by Ionescu [9] in 1956 and, for the general case, by Ghiorcoiasiu and Roscau [7] and Radó [17] in 1962. Our solution is based on a generalization of Radó’s theorem to distributions in a higher dimensional setting and, as far as we know, is different than existing solutions. Finally, we propose several related open problems.