On automorphisms fixing subnormal subgroups of soluble groups
Silvana Franciosi; Francesco de Giovanni
- Volume: 82, Issue: 2, page 217-222
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topFranciosi, Silvana, and de Giovanni, Francesco. "On automorphisms fixing subnormal subgroups of soluble groups." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 82.2 (1988): 217-222. <http://eudml.org/doc/287293>.
@article{Franciosi1988,
abstract = {The group $Aut_\{sn\} G$ of all automorphisms leaving invariant every subnormal subgroup of the group $G$ is studied. In particular it is proved that $Aut_\{sn\} G$ is metabelian if $G$ is soluble, and that $Aut_\{sn\} G$ is either finite or abelian if $G$ is polycyclic.},
author = {Franciosi, Silvana, de Giovanni, Francesco},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Automorphisms; Subnormal subgroups; Soluble groups; automorphisms; subnormal subgroup; hyperabelian; hypoabelian; metabelian; polycyclic group},
language = {eng},
month = {6},
number = {2},
pages = {217-222},
publisher = {Accademia Nazionale dei Lincei},
title = {On automorphisms fixing subnormal subgroups of soluble groups},
url = {http://eudml.org/doc/287293},
volume = {82},
year = {1988},
}
TY - JOUR
AU - Franciosi, Silvana
AU - de Giovanni, Francesco
TI - On automorphisms fixing subnormal subgroups of soluble groups
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1988/6//
PB - Accademia Nazionale dei Lincei
VL - 82
IS - 2
SP - 217
EP - 222
AB - The group $Aut_{sn} G$ of all automorphisms leaving invariant every subnormal subgroup of the group $G$ is studied. In particular it is proved that $Aut_{sn} G$ is metabelian if $G$ is soluble, and that $Aut_{sn} G$ is either finite or abelian if $G$ is polycyclic.
LA - eng
KW - Automorphisms; Subnormal subgroups; Soluble groups; automorphisms; subnormal subgroup; hyperabelian; hypoabelian; metabelian; polycyclic group
UR - http://eudml.org/doc/287293
ER -
References
top- COOPER, C.D.H., Power automorphisms of a group, «Math. Z.» 707 (1968), 335-356. Zbl0169.33801MR236253
- S. FRANCIOSI and DE GIOVANNI, F., On automorphisms fixing normal subgroups of nilpotent groups, «Boll. Un. Mat. Ital.», (7) 1 B (1987), 1161-1170. Zbl0635.20014MR923446
- GASCHÜTZ, W., Gruppen in denen das Normalteilersein transitiv ist, «J. Reine Angew. Math.» 198 (1957), 87-92. Zbl0077.25003MR91277
- HALL, P., Some sufficient conditions for a group to be nilpotent, «Illinois J. Math.» 2 (1958), 787-801. Zbl0084.25602MR105441
- LEINEN, F., Existenziell abgeschlossene LX-Gruppen, «Dissertation (Albert-Ludwigs Universität Freiburg i. Br.)», 1984. Zbl1098.20503
- ROBINSON, D.J.S., Groups in which normality is a transitive relation, «Proc. Cambridge Philos. Soc.» 60 (1964), 21-38. Zbl0123.24901MR159885
- ROBINSON, D.J.S., On finitely generated soluble groups, «Proc. London Math. Soc.» (3) 15 (1965), 508-516. Zbl0132.26801MR175977
- ROBINSON, D.J.S., Finiteness Conditions and Generalized Soluble Groups, Springer, Berlin, 1972. Zbl0243.20033
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.