A Weitzenbôck formula for the second fundamental form of a Riemannian foliation

Paolo Piccinni

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1984)

  • Volume: 77, Issue: 3-4, page 102-110
  • ISSN: 1120-6330

How to cite

top

Piccinni, Paolo. "A Weitzenbôck formula for the second fundamental form of a Riemannian foliation." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 77.3-4 (1984): 102-110. <http://eudml.org/doc/287301>.

@article{Piccinni1984,
author = {Piccinni, Paolo},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {flat normal connection; Riemannian foliation; Weitzenböck formula; constant sectional curvature; second fundamental form; Riemannian submersions; mean curvature; totally geodesic},
language = {eng},
month = {9},
number = {3-4},
pages = {102-110},
publisher = {Accademia Nazionale dei Lincei},
title = {A Weitzenbôck formula for the second fundamental form of a Riemannian foliation},
url = {http://eudml.org/doc/287301},
volume = {77},
year = {1984},
}

TY - JOUR
AU - Piccinni, Paolo
TI - A Weitzenbôck formula for the second fundamental form of a Riemannian foliation
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1984/9//
PB - Accademia Nazionale dei Lincei
VL - 77
IS - 3-4
SP - 102
EP - 110
LA - eng
KW - flat normal connection; Riemannian foliation; Weitzenböck formula; constant sectional curvature; second fundamental form; Riemannian submersions; mean curvature; totally geodesic
UR - http://eudml.org/doc/287301
ER -

References

top
  1. CHEN, B.Y. (1984) - Total mean curvature and submanifolds of finite type, «World Scientific Series on Pure Math.». Zbl0537.53049MR749575DOI10.1142/0065
  2. KAMBER, F.W. and TONDEUR, PH. (1982) - Harmonic foliations, Proc. of the NSF Conference on Harmonic MapsTulane University 1980, «Springer Lect. Notes», 949, 87-121. Zbl0511.57020MR673585
  3. KAMBER, F.W. and TONDEUR, PH. - Curvature properties of harmonic foliations, «Illinois J. of Math.», to appear. Zbl0529.53027MR748954
  4. O'NEILL, B. (1966) - The fundamental equation of a submersion. «Michigan Math. J.», 13, 459-469. Zbl0145.18602MR200865
  5. O'NEILL, B. (1983) - Semi-Riemannian geometry, Academic Press. MR719023
  6. REINHART, B.L. (1983) - Differential Geometry of Foliations, Springer. Zbl0506.53018MR705126DOI10.1007/978-3-642-69015-0
  7. SIMONS, J. (1968) - Minimal varieties in Riemannian manifolds, «Ann. of Math.», 88, 62-105. Zbl0181.49702MR233295
  8. WU, H. (1982) - The Bochner technique, Proc. of the 1980 Beijing Symposium on Diff. Geometry and Diff. Equations, Science Press, China, 2, 929-1071. Zbl0528.53042MR714349
  9. YANO, K. and KON, M. (1983) - CR-submanifolds of Kaehlerian and Sasakian manifolds, Birkhäusen. Zbl0496.53037MR688816

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.