A Weitzenbôck formula for the second fundamental form of a Riemannian foliation
- Volume: 77, Issue: 3-4, page 102-110
- ISSN: 1120-6330
Access Full Article
topAbstract
topHow to cite
topReferences
top- CHEN, B.Y. (1984) - Total mean curvature and submanifolds of finite type, «World Scientific Series on Pure Math.». Zbl0537.53049MR749575DOI10.1142/0065
- KAMBER, F.W. and TONDEUR, PH. (1982) - Harmonic foliations, Proc. of the NSF Conference on Harmonic MapsTulane University 1980, «Springer Lect. Notes», 949, 87-121. Zbl0511.57020MR673585
- KAMBER, F.W. and TONDEUR, PH. - Curvature properties of harmonic foliations, «Illinois J. of Math.», to appear. Zbl0529.53027MR748954
- O'NEILL, B. (1966) - The fundamental equation of a submersion. «Michigan Math. J.», 13, 459-469. Zbl0145.18602MR200865
- O'NEILL, B. (1983) - Semi-Riemannian geometry, Academic Press. MR719023
- REINHART, B.L. (1983) - Differential Geometry of Foliations, Springer. Zbl0506.53018MR705126DOI10.1007/978-3-642-69015-0
- SIMONS, J. (1968) - Minimal varieties in Riemannian manifolds, «Ann. of Math.», 88, 62-105. Zbl0181.49702MR233295
- WU, H. (1982) - The Bochner technique, Proc. of the 1980 Beijing Symposium on Diff. Geometry and Diff. Equations, Science Press, China, 2, 929-1071. Zbl0528.53042MR714349
- YANO, K. and KON, M. (1983) - CR-submanifolds of Kaehlerian and Sasakian manifolds, Birkhäusen. Zbl0496.53037MR688816