On uniqueness for bounded channel flows of viscoelastic fluids

Marshall J. Leitman; Epifanio G. Virga

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1988)

  • Volume: 82, Issue: 4, page 717-723
  • ISSN: 1120-6330

Abstract

top
It was conjectured in [1] that there is at most one bounded channel flow for a viscoelastic fluid whose stress relaxation function G is positive, integrable, and strictly convex. In this paper we prove the uniqueness of bounded channel flows, assuming G to be non-negative, integrable, and convex, but different from a very specific piecewise linear function. Furthermore, whenever these hypotheses apply, the unbounded channel flows, if any, must grow in time faster than any polynomial.

How to cite

top

Leitman, Marshall J., and Virga, Epifanio G.. "On uniqueness for bounded channel flows of viscoelastic fluids." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 82.4 (1988): 717-723. <http://eudml.org/doc/287316>.

@article{Leitman1988,
abstract = {It was conjectured in [1] that there is at most one bounded channel flow for a viscoelastic fluid whose stress relaxation function $G$ is positive, integrable, and strictly convex. In this paper we prove the uniqueness of bounded channel flows, assuming $G$ to be non-negative, integrable, and convex, but different from a very specific piecewise linear function. Furthermore, whenever these hypotheses apply, the unbounded channel flows, if any, must grow in time faster than any polynomial.},
author = {Leitman, Marshall J., Virga, Epifanio G.},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Uniqueness; Channel flows; Viscoelasticy fluids; bounded channel flow; viscoelastic fluid; stress relaxation function},
language = {eng},
month = {12},
number = {4},
pages = {717-723},
publisher = {Accademia Nazionale dei Lincei},
title = {On uniqueness for bounded channel flows of viscoelastic fluids},
url = {http://eudml.org/doc/287316},
volume = {82},
year = {1988},
}

TY - JOUR
AU - Leitman, Marshall J.
AU - Virga, Epifanio G.
TI - On uniqueness for bounded channel flows of viscoelastic fluids
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1988/12//
PB - Accademia Nazionale dei Lincei
VL - 82
IS - 4
SP - 717
EP - 723
AB - It was conjectured in [1] that there is at most one bounded channel flow for a viscoelastic fluid whose stress relaxation function $G$ is positive, integrable, and strictly convex. In this paper we prove the uniqueness of bounded channel flows, assuming $G$ to be non-negative, integrable, and convex, but different from a very specific piecewise linear function. Furthermore, whenever these hypotheses apply, the unbounded channel flows, if any, must grow in time faster than any polynomial.
LA - eng
KW - Uniqueness; Channel flows; Viscoelasticy fluids; bounded channel flow; viscoelastic fluid; stress relaxation function
UR - http://eudml.org/doc/287316
ER -

References

top
  1. LEITMAN, M.J. and VIRGA, E.G. (1988) - On bounded channel flows of viscoelastic fluids, «Atti Acc. Lincei Rend. fis.», 82,291-291. Zbl0714.76013MR1152648
  2. CAPRIZ, G. and VIRGA, E.G. (1988) - Un teorema di unicità in viscoelasticità lineare, «Rend. Sem. Mat. Univ. Padova», 79, 15-24. Zbl0655.73020MR964016
  3. VERGARA CAFFARELLI, G. and VIRGA, E.G. (1987) - Sull'unicità della soluzione del problema dinamico della viscoelasticità lineare, «Atti Acc. Lincei Rend. fis.», 81, 379-387. Zbl0667.73027MR999829
  4. JOSEPH, D.D., RENARDY, M. and SAUT, J.C. (1984-85) - Hyperbolicity and change of type in the flow of viscoelastic fluids, «Arch. Rational Mech. Anal.», 87, 213-251. Zbl0572.76011MR768067DOI10.1007/BF00250725
  5. HALE, J. (1971) - Functional differential equations, «Springer Verlag, Berlin», etc. Zbl0222.34003MR390425
  6. LEITMAN, M.J. and MIZEL, V.J. (1974) - On fading memory spaces and hereditary integral equations, «Arch. Rational Mech. Anal.», 75, 18-51. Zbl0297.45001MR367734

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.