Una proprietà di P n Y

Massimo Lorenzani

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1982)

  • Volume: 73, Issue: 5, page 116-121
  • ISSN: 1120-6330

Abstract

top
Let Y be an 5 dimensional closed subscheme of P n Y and p ( P n Y ) the largest integer p such that H i ( P n Y , L ) is finite dimensional for all i < p and for all locally free sheaves L on P n Y . If we introduce the same integer p ( P n Y a ) in the complex case, i.e. when L runs through the set of all locally free analytic sheaves on P n Y a , we show that p ( P n Y a ) = n s 1 if p ( P n Y ) = n s 1 .

How to cite

top

Lorenzani, Massimo. "Una proprietà di $P^{n} — Y$." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 73.5 (1982): 116-121. <http://eudml.org/doc/287359>.

@article{Lorenzani1982,
author = {Lorenzani, Massimo},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Hartshorne conjecture; local cohomological dimension; cohomology of complement of subscheme of projective space},
language = {ita},
month = {11},
number = {5},
pages = {116-121},
publisher = {Accademia Nazionale dei Lincei},
title = {Una proprietà di $P^\{n\} — Y$},
url = {http://eudml.org/doc/287359},
volume = {73},
year = {1982},
}

TY - JOUR
AU - Lorenzani, Massimo
TI - Una proprietà di $P^{n} — Y$
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1982/11//
PB - Accademia Nazionale dei Lincei
VL - 73
IS - 5
SP - 116
EP - 121
LA - ita
KW - Hartshorne conjecture; local cohomological dimension; cohomology of complement of subscheme of projective space
UR - http://eudml.org/doc/287359
ER -

References

top
  1. Barth, W. (1970) - Der Abstand von einer algebraischen Mannigfaltigkeit im komplex-projectiven Raum. «Math. Arm.», 187, 150-162. Zbl0184.31303MR268181
  2. Frish, J. e Guenot, J. (1969) - Prolongement de faisceaux analytiques cohérents, «Inv. Math.», 7, 321-343. Zbl0179.12201MR252683
  3. Grothendieck, A. (1967) - Local Cohomology, «Lectures Notes Math.», 41, Springer-Verlag. MR224620
  4. Grothendieck, A. (1971) - Revêtements Etales et Groupe Fondamental, «Lecture Notes Math.», 224, Springer-Verlag. MR354651
  5. Hartshorne, R. (1970) - Ample Subvarieties of Algebraic Varieties, «Lecture Notes Math.», 156, Springer-Verlag. Zbl0208.48901MR282977
  6. Hartshorne, R. (1977) - Algebraic Geometry, «Graduate Text Math.», 57, Spinger-Verlag. Zbl0367.14001MR463157
  7. Hartshorne, R. e Speiser, R.S. (1977) — Local Cohomological dimension in characteristic p, «Ann. Math.», 105, 45—79. Zbl0362.14002MR441962
  8. Lorenzani, M. e Maschietti, A. (1976) - Quelques remarques sur la cohérence des faisceaux de cohomologie locale, «C. R. Acad. Sc. Paris», 283, 783-785. Zbl0348.14006MR422258
  9. Ogus, A. (1973) - Local Cohomological dimension of algebraic varieties, «Ann. Math.», 98, 327-365. Zbl0308.14003MR506248
  10. Siu, Y-T. e Trautmann, G. (1971) - Gap-Sheaves and extension of Coherent Analytic Subsheaves, «Lecture Notes Math.», 172, Springer-Verlag. Zbl0208.10403MR287033

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.