Some chain rules for certain derivatives of double tensors depending on other such tensors and some point variables. II. On the Lagrangian spatial derivative in relativity
- Volume: 80, Issue: 4, page 205-213
- ISSN: 1120-6330
Access Full Article
topHow to cite
topBressan, Aldo. "Some chain rules for certain derivatives of double tensors depending on other such tensors and some point variables. II. On the Lagrangian spatial derivative in relativity." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 80.4 (1986): 205-213. <http://eudml.org/doc/287412>.
@article{Bressan1986,
author = {Bressan, Aldo},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {hyperelasticity},
language = {eng},
month = {4},
number = {4},
pages = {205-213},
publisher = {Accademia Nazionale dei Lincei},
title = {Some chain rules for certain derivatives of double tensors depending on other such tensors and some point variables. II. On the Lagrangian spatial derivative in relativity},
url = {http://eudml.org/doc/287412},
volume = {80},
year = {1986},
}
TY - JOUR
AU - Bressan, Aldo
TI - Some chain rules for certain derivatives of double tensors depending on other such tensors and some point variables. II. On the Lagrangian spatial derivative in relativity
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1986/4//
PB - Accademia Nazionale dei Lincei
VL - 80
IS - 4
SP - 205
EP - 213
LA - eng
KW - hyperelasticity
UR - http://eudml.org/doc/287412
ER -
References
top- BRESSAN, A. (1963) - Cinematica dei sistemi continui in Relatività generale. «Ann. Mat. Pura Appl.», 62, 99. Zbl0117.23502MR160355
- BRESSAN, A. (1978) - Relativistic theories of materials, Springer-Verlag, 290 pp. Zbl0373.73001MR509212
- BRESSAN, A. (1986) - Some chain rules for certain derivatives of double tensors depending on other such tensors and some point variables. Part 1: On the pseudo-total derivative. «Rend. Acc. Lincei» 80, 116. Zbl0727.73007MR976697
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.