Sottopotenziali energia libera per l'isteresi meccanica

Claudio Giorgi

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1985)

  • Volume: 78, Issue: 5, page 218-230
  • ISSN: 1120-6330

Abstract

top
This paper deals with free-energy lower-potentials for some rate-independent one-dimensional models of isothermal finite elastoplasticity proposed in [1]. Extending the thermodynamic arguments of Coleman and Owen [3] to large deformations, the existence, non-uniqueness and regularity of free-energy as function of state are deduced rather than assumed. This approach, along with some optimal control techniques, enables us to construct maximum and minimum free-energy functions and a wide class of differentiable potentials compatible with the given constitutive relations.

How to cite

top

Giorgi, Claudio. "Sottopotenziali energia libera per l'isteresi meccanica." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 78.5 (1985): 218-230. <http://eudml.org/doc/287431>.

@article{Giorgi1985,
author = {Giorgi, Claudio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {free-energy lower-potentials; rate-independent one-dimensional models; isothermal finite elastoplasticity; existence; non-uniqueness; regularity; optimal control techniques; maximum; minimum free-energy functions; differentiable potentials},
language = {ita},
month = {5},
number = {5},
pages = {218-230},
publisher = {Accademia Nazionale dei Lincei},
title = {Sottopotenziali energia libera per l'isteresi meccanica},
url = {http://eudml.org/doc/287431},
volume = {78},
year = {1985},
}

TY - JOUR
AU - Giorgi, Claudio
TI - Sottopotenziali energia libera per l'isteresi meccanica
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1985/5//
PB - Accademia Nazionale dei Lincei
VL - 78
IS - 5
SP - 218
EP - 230
LA - ita
KW - free-energy lower-potentials; rate-independent one-dimensional models; isothermal finite elastoplasticity; existence; non-uniqueness; regularity; optimal control techniques; maximum; minimum free-energy functions; differentiable potentials
UR - http://eudml.org/doc/287431
ER -

References

top
  1. GIORGI, C. e LAZZARI, B. (1983) - Sull'energia libera per un materiale elastoplastico in presenza di deformazioni finite isotermiche, «Fisica Matematica, Suppl. B.U.M.I.», 2, 243-259. MR734776
  2. COLEMAN, B.D. e OWEN, D.R. (1974) - A Mathematical Foundation for Thermodynanamics, «Arch. Rational Mech. Anal.», 54, 1-104. Zbl0306.73004MR395502
  3. COLEMAN, B.D. e OWEN, D.R. (1975) - On Thermodynamics and Elastic Plastic Materials, «Arch. Rational Mech. Anal.», 59, 25-51. Zbl0332.73003MR381526
  4. LAZZARI, B. (1982) - Un teorema di caratterizzazione per l'energia libera per una classe di materiali elastoplastici, «Ann. Univ. Ferrara, sez. VII, Sc. Mat.», 28, 127-141. Zbl0527.73022MR701892
  5. GIORGI, C. e MARZOCCHI, A. - Sulla stabilità dell'oscillatore elasto-plastico, Rapporto interno, Istituto Matematico dell'Università Cattolica di Brescia. 
  6. COLEMAN, B.D. e MIZEL, V.J. (1968) - On the Stability of Solutions of Functional-differential Equations, «Arch. Rational Mech. Anal.», 30, 173-196. Zbl0184.36801MR229933
  7. BUHITE, J.L. e OWEN, D.R. (1979) - An Ordinary Differential Equation from the Theory of Plasticity, «Arch. Rational Mech. Anal.», 71, 357-383. Zbl0424.73031MR533288DOI10.1007/BF00247709
  8. GIORGI, C. - Sui potenziali elettromagnetici per alcuni modelli di isteresi magnetica, «Annali di Matematica Pura ed Applicata» (in corso di stampa). 
  9. WILLEMS, J.C. (1972) - Dissipative Dynamical Systems. Part I: General Theory, «Arch. Rational Mech. Anal.», 45, 321-351. Zbl0252.93002MR527462
  10. MIHAILESCU-SILICIU, M. e SILICIU, I. (1979) - Energy for Hypoelastic Constitutive Equations, «Arch. Rational Mech. Anal.», 71, 327-344. Zbl0418.73006MR533286DOI10.1007/BF00247707

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.