Some results for an optimal control problem with a semilinear state equation

Fausto Gozzi

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni (1988)

  • Volume: 82, Issue: 3, page 423-429
  • ISSN: 1120-6330

Abstract

top
We consider a quadratic control problem with a semilinear state equation depending on a small parameter ϵ . We show that the optimal control is a regular function of such parameter.

How to cite

top

Gozzi, Fausto. "Some results for an optimal control problem with a semilinear state equation." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni 82.3 (1988): 423-429. <http://eudml.org/doc/287438>.

@article{Gozzi1988,
abstract = {We consider a quadratic control problem with a semilinear state equation depending on a small parameter $\epsilon$. We show that the optimal control is a regular function of such parameter.},
author = {Gozzi, Fausto},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
keywords = {Optimal control; Semilinear state equation; Hamilton-Jacobi equation; quadratic control problem; semilinear state equation},
language = {eng},
month = {9},
number = {3},
pages = {423-429},
publisher = {Accademia Nazionale dei Lincei},
title = {Some results for an optimal control problem with a semilinear state equation},
url = {http://eudml.org/doc/287438},
volume = {82},
year = {1988},
}

TY - JOUR
AU - Gozzi, Fausto
TI - Some results for an optimal control problem with a semilinear state equation
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
DA - 1988/9//
PB - Accademia Nazionale dei Lincei
VL - 82
IS - 3
SP - 423
EP - 429
AB - We consider a quadratic control problem with a semilinear state equation depending on a small parameter $\epsilon$. We show that the optimal control is a regular function of such parameter.
LA - eng
KW - Optimal control; Semilinear state equation; Hamilton-Jacobi equation; quadratic control problem; semilinear state equation
UR - http://eudml.org/doc/287438
ER -

References

top
  1. BARBU, V. - Hamilton-Jacobi equations and non linear control problems, to appear. Zbl0606.49020
  2. BARBU, V. and DA PRATO, G.- Hamilton-Jacobi equations in Hilbert spaces. Pitman, London (1983). Zbl0508.34001
  3. BARBU, V. and DA PRATO, G. - Hamilton-Jacobi equations in Hilbert spaces; variational and semigroup approach, Annali di Mat. pura ed applicata, (IV), Vol. CXLII, (1985), pp. 303-349. Zbl0508.34001MR839043DOI10.1007/BF01766599
  4. CRANDALL, M.G. and LIONS, P.L. - Viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc.277, (1983), pp. 1-42. Zbl0599.35024MR690039DOI10.2307/1999343
  5. HENRY, D. - Geometric theory of semilinear parabolic equations, Lecture notes in Math.840, Springer-Verlag, (1981). Zbl0456.35001MR610244
  6. LIONS, J.L. - Optimal control of systems governed by partial differential equations, Springer, Wiesbaden, 1972. Zbl0203.09001
  7. PAZY, A. - Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York-Heidelberg-Berlin, 1983. Zbl0516.47023MR710486DOI10.1007/978-1-4612-5561-1

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.